ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Quantum feedback cooling of two trapped ions |
Shuo Zhang(张硕)1,3, Wei Wu(吴伟)2, Chun-Wang Wu(吴春旺)2, Feng-Guang Li(李风光)1, Tan Li(李坦)1, Xiang Wang(汪翔)1, Wan-Su Bao(鲍皖苏)1 |
1 Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China;
2 College of Science, National University of Defense Technology, Changsha 410073, China;
3 Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou 450004, China |
|
|
Abstract We present a sub-Doppler cooling scheme of a two-trapped-ion crystal by quantum feedback control method. In the scheme, we obtain the motional information by continuously measuring the spontaneous emission photons from one single ion of the crystal, and then apply a feedback force to cool the whole chain down.We derive the cooling dynamics of the cooling scheme using quantum feedback theory and quantum regression theorem. The result shows that with experimentally achievable parameters, our scheme can achieve lower temperature and faster cooling rate than Doppler cooling.
|
Received: 19 December 2016
Revised: 01 March 2017
Accepted manuscript online:
|
PACS:
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11504430,61205108,and 11304387) and the National Key R&D Program of China (Grant No.2016YFA0301903). |
Corresponding Authors:
Wei Wu, Chun-Wang Wu
E-mail: weiwu@nudt.edu.cn;cwwu@nudt.edu.cn
|
Cite this article:
Shuo Zhang(张硕), Wei Wu(吴伟), Chun-Wang Wu(吴春旺), Feng-Guang Li(李风光), Tan Li(李坦), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏) Quantum feedback cooling of two trapped ions 2017 Chin. Phys. B 26 074205
|
[1] |
Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
|
[2] |
Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
|
[3] |
Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
|
[4] |
Guan H, Huang Y, Liu P L, Bian W, Shao H and Gao K L 2015 Chin. Phys. B 24 054213
|
[5] |
Stenholm S 1986 Rev. Mod. Phys. 58 699
|
[6] |
Zhou F, Xie Y, Chen L, Wan W, Wu H Y and Feng M 2013 Chin. Phys. Lett. 30 033701
|
[7] |
Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J and Gould P 1995 Phys. Rev. Lett. 75 4011
|
[8] |
Roos Ch, Zeiger Th, Rohde H, Nägerl H C, Eschner J, Leibfried D, Schmidt-Kaler F and Blatt R 1999 Phys. Rev. Lett. 83 4713
|
[9] |
Roos C F, Leibfried D, Mundt A, Schmidt-Kaler F, Eschner J and Blatt R 2000 Phys. Rev. Lett. 85 5547
|
[10] |
Cerrillo J, Retzker A and Plenio M B 2010 Phys. Rev. Lett. 104 043003
|
[11] |
Zhang S, Wu C W and Chen P X 2012 Phys. Rev. A 85 053420
|
[12] |
Zhang J, Zhang S, Ou B Q, Wu W and Chen P X 2014 Chin. Phys. B 23 113701
|
[13] |
Lu Y, Zhang J Q, Cui J M, Cao D Y, Zhang S, Huang Y F, Li C F, and Guo G C 2015 Phys. Rev. A 92 023420
|
[14] |
Yi Z and Gu W J 2017 Opt. Express 25 1314
|
[15] |
Yi Z, Li G X and Yang Y P 2013 Phys. Rev. A 87 053408
|
[16] |
Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 642
|
[17] |
Wiseman H M and Milburn G J 1993 Phys. Rev. Lett. 70 548
|
[18] |
Wiseman H M 1994 Phys. Rev. A 49 2133
|
[19] |
Steixner V, Rabl P and Zoller P 2005 Phys. Rev. A 72 043826
|
[20] |
Steixner V, Rabl P and Zoller P 2005 Phys. Rev. A 72 043823
|
[21] |
Bushev P, Rotter D, Wilson A, Dubin F, Becher C, Eschner J, Blatt R, Steixner V, Rabl P and Zoller P 2006 Phys. Rev. Lett. 96 043003
|
[22] |
Jiang Z and Chen P X 2012 Acta Phys. Sin. 61 14209 (in Chinese)
|
[23] |
Glaetzle A W, Hammerer K, Daley A J, Blatt R and Zoller P 2010 Opt. Commun. 283 758
|
[24] |
James D 1998 Appl. Phys. B 66 181
|
[25] |
Cirac J I, Blatt R and Zoller P 1992 Phys. Rev. A 46 2668
|
[26] |
Gardiner C W and Zoller P 2000 Quantum Noise (Berlin:Springer)
|
[27] |
Olmschenk S, Matsukevich D N, Maunz P, Hayes D, Duan L M and Monroe C 2009 Science 323 486
|
[28] |
Maiwald R, Leibfried D, Britton J, Bergquist J C, Leuchs G and Wineland D J 2009 Nat. Phys. 5 551
|
[29] |
Maiwald R, Golla A, Fischer M, Bader M, Heugel S, Chalopin B, Sondermann M and Leuchs G 2012 Phys. Rev. A 86 043431
|
[30] |
Shu G, Kurz N, Dietrich M R and Blinov B B 2010 Phys. Rev. A 81 042321
|
[31] |
Nägerl H C, Leibfried D, Rohde H, Thalhammer G, Eschner J, Schmidt-Kaler F and Blatt R 1999 Phys. Rev. A 60 145
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|