Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117104    DOI: 10.1088/1674-1056/ac67c1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties

Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡)
School of Physics and Information Engineering, Guangdong University of Education, Guangzhou 510303, China
Abstract  Based on the coherent interaction and action-counteraction principles, we investigate the ground state properties for small polaron systems, the coherent-squeezed fluctuation correction, and the anomalous lattice quantum fluctuation, with the new variational generator containing correlated squeezed-coherent coupling and quantum entanglement. Noting that $-2t $ is the T.B.A. energy, for the coherent interaction effect, we find the ground-state energy $E_0$ to be $-2.428t$, in which the coherent squeezed fluctuation correction $-A_0 t$ is $-0.463t $ (where $ t $ is the hopping integral, $\omega $ is the phonon frequency), with the electron-one-phonon coupling constant $g=$1 and the electron-two-phonon coupling constant $g_{1}=-0.1$. However, as a result of the action-counteraction effect, $\tilde{{E}}_{0} $ is $-2.788t$, but $-\tilde{{A}}_{0} t$ is $-0.735t$. As to the polaron binding energy $(E_{\rm P} )$, for the coherent interaction effect, $E_{\rm P} $ is $-1.38\omega $, but for the action-counteraction effect, $\tilde{{E}}_{\rm P}$ is $-1.88\omega $. In particular, the electron-two-phonon interaction noticeably enlarges the coherent interaction and the coherent squeezed quantum fluctuation correction. By intervening with the quantum entanglement, the evolutions of the squeezed coherent state and the lattice quantum fluctuation begin to take control. At that time, we encounter a new quantum phase coherence phenomenon — the collapse and revival of inversion repeatedly for the coherent state in the entangled evolution.
Keywords:  coherent interaction and action-counteraction      correlated representation variational approach      entangled-squeezed coherent state      interaction of electron with the coherent squeezed fluctuation  
Received:  29 November 2021      Revised:  29 November 2021      Accepted manuscript online:  18 April 2022
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
  71.38.Mx (Bipolarons)  
  71.45.Lr (Charge-density-wave systems)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10574163).
Corresponding Authors:  Zhi-Hua Luo     E-mail:  lo-zh@126.com

Cite this article: 

Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡) Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties 2022 Chin. Phys. B 31 117104

[1] Holstein T 1959 Ann. Phys. 8 325
[2] Fradkin E and Hirsch J E 1983 Phys. Rev. B 27 1680
[3] Hirsch J E and Fradkin E 1983 Phys. Rev. B 27 4302
[4] Hirsch J E 1985 Phys. Rev. B 31 6022
[5] Nasu K 1988 Phys. Rev. B 37 5075
[6] Slusher R E, Yurke B, Grangier P, Lapport A, Wells D F and Reid N 1987 J. Opt. Soc. Am. B 4 1453
[7] Jiang Q Y, Li S, Thomas F G, et al. 2010 Chin. Phys. Lett. 27 107301
[8] Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583
[9] McQueeney R J, Sarrao J L, Pagliuso P G, Stephens P W and Osborn R 2001 Phys. Rev. Lett. 87 077001
[10] Datta S, Das A and Yarlagadda S 2005 Phys. Rev. B 71 235118
[11] Weibe A and Fehske H 2004 New J. Phys. 6 158
[12] Tajima S, Fudmoto Y, Kakeshiha T and Uchida S 2005 Phys. Rev. B 71 094508
[13] Gunnarsson O 1997 Rev. Mod. Phys. 69 575
[14] Alexandre S S, Artacho E, Soler J M and Chacham H 2003 Phys. Rev. Lett. 91 108105
[15] Fröhlich H 1954 Adv. Phys. 3 325
[16] Kuper C G and Whitfield G D 1962 Polarons and Excitons (New York: Plenum Press)
[17] Ren X Z, Huang S W, Liao X, et al. 2009 Acta Phys. Sin. 58 2680 (in Chinese)
[18] Fratini S and Quémerais P 2002 Eur. Phys. J. B 29 41
[19] Fratini S, de Pasquale F and Ciuchi S 2001 Phys. Rev. B 63 153101
[20] Lemmens L F, Brosens F and Devreese J T 1996 Phys. Rev. E 53 4467
[21] Lemmens L F, Brosens F and Devreese J T 1999 Solid State Commun. 109 615
[22] Klimin S N, Fomin V M, Brosens F and Devreese J T 2004 Physica E 22 494
[23] Klimin S N, Fomin V M, Brosens F and Devreese J T 2004 Phys. Rev. B 69 235324
[24] Perroni C A, Cataudella V, de Filippis G and Marigliano Ramaglia V 2005 Phys. Rev. B 71 054301
[25] Brosens F, Klimin S N and Devreese J T 2005 Phys. Rev. B 71 214301
[26] Bon?a J, Trugman S A and Batistic I 1999 Phys. Rev. B 60 1633
[27] Baristic O S 2002 Phys. Rev. B 65 11430
[28] Cataudella V, De Filippis G and Iadonisi 2000 Phys. Rev. B 62 1496
[29] Zhang C, Jeckelmann E and White S R 1999 Phys. Rev. B 60 14092
[30] Wellein G and Fehske H 1997 Phys. Rev. B 56 4513
[31] Fehske H, Loos J and Wellein G 2000 Phys. Rev. B 61 8016
[32] Wang K L, Chen Q H and Wan S L 1994 Phys. Lett. A 185 216
[33] Chen Q H, Fang M H and Zhang Q R 1996 Phys. Rev. B 53 11296
[34] Kornilovitch P E 2000 Phys. Rev. Lett. 84 1551
[35] Wan S L and Wang K L 2000 Chin. Phys. Lett. 17 129
[36] Ren Q B and Chen Q H 2005 Chin. Phys. Lett. 22 2914
[37] Ivanov V A, Zhuravlev M Y, Muragama Y and Nakajima S 1996 JETP Lett. 64 148
[38] Ren X Z, Liao X, Liu T and Wang K L 2006 Acta. Phys. Sin. 55 2865 (in Chinese)
[39] Liang X X and Ban S L 2004 Chin. Phys. B 13 71
[40] Wang Z G, Duan S Q and Zhao Z G 2005 Chin. Phys. B 14 1332
[41] Liu W Y, An Y Y and Yan Z Y 2007 Chin. Phys. B 16 3704
[42] Zheng H 1988 Phys. Rev. B 37 7419
[43] Zheng H, Feinberg D and Avignon M 1989 Phys. Rev. B 39 9405
[44] Feinberg D, Ciuchi S and Pasquale F D 1990 Int. J. Mode. Phys. B 04 1317
[45] Luo Z H, Yu C F and Lin Q W 2011 Acta Phys. Sin. 60 057104 (in Chinese)
[46] Luo Z H, Cao Z J and Yu C F 2011 Chin. Phys. B 20 067103
[47] Luo Z H and Liang G D 2012 Acta Phys. Sin. 61 057303 (in Chinese)
[48] Luo Z H 2013 Acta Phys. Sin. 62 207201 (in Chinese)
[49] Pang X F 1999 Phys. Lett. A 259 466
[50] Pang X F 2001 J. Phys. Chem. Solids 62 491
[1] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[2] Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature
Ying-Jie Chen(陈英杰) and Feng-Lan Shao(邵凤兰). Chin. Phys. B, 2021, 30(11): 110304.
[3] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[4] Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field
Kang-Kang Ju(居康康), CuiXian Guo(郭翠仙), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2017, 26(9): 097103.
[5] Temperature and hydrogen-like impurity effects on the excited state of the strong coupling bound polaron in a CsI quantum pseudodot
Jing-Lin Xiao(肖景林). Chin. Phys. B, 2017, 26(2): 027104.
[6] Crossover of large to small radius polaron in ionic crystals
M I Umo. Chin. Phys. B, 2016, 25(11): 117104.
[7] Polaron effect on the optical rectification in spherical quantum dots with electric field
Zhen-Yu Feng(冯振宇), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2016, 25(10): 107804.
[8] Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field
Xu-Fang Bai(白旭芳), Ying Zhang(张颖), Wuyunqimuge(乌云其木格), Eerdunchaolu(额尔敦朝鲁). Chin. Phys. B, 2016, 25(7): 077804.
[9] Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot
M Tiotsop, A J Fotue, S C Kenfack, N Issofa, H Fotsin, L C Fai. Chin. Phys. B, 2016, 25(4): 048401.
[10] Effects of electron-optical phonon interactions on the polaron energy in a wurtzite ZnO/MxZn1-xO quantum well
Zhao Feng-Qi (赵凤岐), Zhang Min (张敏), Bai Jin-Hua (白金花). Chin. Phys. B, 2015, 24(9): 097105.
[11] Tight-binding electron-phonon coupling and band renormalization in graphene
Zhang De-Sheng (张德生), Kang Guang-Zhen (康广震), Li Jun (李俊). Chin. Phys. B, 2015, 24(1): 017301.
[12] Influence of electron-phonon interaction on the properties of transport through double quantum dot with ferromagnetic leads
Luo Kan (罗侃), Wang Fa-Qiang (王发强), Liang Rui-Sheng (梁瑞生), Ren Zhen-Zhen (任珍珍). Chin. Phys. B, 2014, 23(10): 107103.
[13] Electron-phonon coupling in cuprate and iron-based superconductors revealed by Raman scattering
Zhang An-Min (张安民), Zhang Qing-Ming (张清明). Chin. Phys. B, 2013, 22(8): 087103.
[14] The effect of interface hopping on inelastic scattering of oppositely charged polarons in polymers
Di Bing (邸冰), Wang Ya-Dong (王亚东), Zhang Ya-Lin (张亚琳), An Zhong (安忠). Chin. Phys. B, 2013, 22(6): 067103.
[15] Built-in electric field effect on cyclotron mass of magnetopolarons in a wurtzite InxGa1-xN/GaN quantum well
Zhao Feng-Qi (赵凤岐), Yong Mei (咏梅). Chin. Phys. B, 2012, 21(10): 107103.
No Suggested Reading articles found!