CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties |
Zhi-Hua Luo(罗质华)† and Chao-Fan Yu(余超凡) |
School of Physics and Information Engineering, Guangdong University of Education, Guangzhou 510303, China |
|
|
Abstract Based on the coherent interaction and action-counteraction principles, we investigate the ground state properties for small polaron systems, the coherent-squeezed fluctuation correction, and the anomalous lattice quantum fluctuation, with the new variational generator containing correlated squeezed-coherent coupling and quantum entanglement. Noting that $-2t $ is the T.B.A. energy, for the coherent interaction effect, we find the ground-state energy $E_0$ to be $-2.428t$, in which the coherent squeezed fluctuation correction $-A_0 t$ is $-0.463t $ (where $ t $ is the hopping integral, $\omega $ is the phonon frequency), with the electron-one-phonon coupling constant $g=$1 and the electron-two-phonon coupling constant $g_{1}=-0.1$. However, as a result of the action-counteraction effect, $\tilde{{E}}_{0} $ is $-2.788t$, but $-\tilde{{A}}_{0} t$ is $-0.735t$. As to the polaron binding energy $(E_{\rm P} )$, for the coherent interaction effect, $E_{\rm P} $ is $-1.38\omega $, but for the action-counteraction effect, $\tilde{{E}}_{\rm P}$ is $-1.88\omega $. In particular, the electron-two-phonon interaction noticeably enlarges the coherent interaction and the coherent squeezed quantum fluctuation correction. By intervening with the quantum entanglement, the evolutions of the squeezed coherent state and the lattice quantum fluctuation begin to take control. At that time, we encounter a new quantum phase coherence phenomenon — the collapse and revival of inversion repeatedly for the coherent state in the entangled evolution.
|
Received: 29 November 2021
Revised: 29 November 2021
Accepted manuscript online: 18 April 2022
|
PACS:
|
71.38.-k
|
(Polarons and electron-phonon interactions)
|
|
71.38.Mx
|
(Bipolarons)
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10574163). |
Corresponding Authors:
Zhi-Hua Luo
E-mail: lo-zh@126.com
|
Cite this article:
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡) Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties 2022 Chin. Phys. B 31 117104
|
[1] Holstein T 1959 Ann. Phys. 8 325 [2] Fradkin E and Hirsch J E 1983 Phys. Rev. B 27 1680 [3] Hirsch J E and Fradkin E 1983 Phys. Rev. B 27 4302 [4] Hirsch J E 1985 Phys. Rev. B 31 6022 [5] Nasu K 1988 Phys. Rev. B 37 5075 [6] Slusher R E, Yurke B, Grangier P, Lapport A, Wells D F and Reid N 1987 J. Opt. Soc. Am. B 4 1453 [7] Jiang Q Y, Li S, Thomas F G, et al. 2010 Chin. Phys. Lett. 27 107301 [8] Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583 [9] McQueeney R J, Sarrao J L, Pagliuso P G, Stephens P W and Osborn R 2001 Phys. Rev. Lett. 87 077001 [10] Datta S, Das A and Yarlagadda S 2005 Phys. Rev. B 71 235118 [11] Weibe A and Fehske H 2004 New J. Phys. 6 158 [12] Tajima S, Fudmoto Y, Kakeshiha T and Uchida S 2005 Phys. Rev. B 71 094508 [13] Gunnarsson O 1997 Rev. Mod. Phys. 69 575 [14] Alexandre S S, Artacho E, Soler J M and Chacham H 2003 Phys. Rev. Lett. 91 108105 [15] Fröhlich H 1954 Adv. Phys. 3 325 [16] Kuper C G and Whitfield G D 1962 Polarons and Excitons (New York: Plenum Press) [17] Ren X Z, Huang S W, Liao X, et al. 2009 Acta Phys. Sin. 58 2680 (in Chinese) [18] Fratini S and Quémerais P 2002 Eur. Phys. J. B 29 41 [19] Fratini S, de Pasquale F and Ciuchi S 2001 Phys. Rev. B 63 153101 [20] Lemmens L F, Brosens F and Devreese J T 1996 Phys. Rev. E 53 4467 [21] Lemmens L F, Brosens F and Devreese J T 1999 Solid State Commun. 109 615 [22] Klimin S N, Fomin V M, Brosens F and Devreese J T 2004 Physica E 22 494 [23] Klimin S N, Fomin V M, Brosens F and Devreese J T 2004 Phys. Rev. B 69 235324 [24] Perroni C A, Cataudella V, de Filippis G and Marigliano Ramaglia V 2005 Phys. Rev. B 71 054301 [25] Brosens F, Klimin S N and Devreese J T 2005 Phys. Rev. B 71 214301 [26] Bon?a J, Trugman S A and Batistic I 1999 Phys. Rev. B 60 1633 [27] Baristic O S 2002 Phys. Rev. B 65 11430 [28] Cataudella V, De Filippis G and Iadonisi 2000 Phys. Rev. B 62 1496 [29] Zhang C, Jeckelmann E and White S R 1999 Phys. Rev. B 60 14092 [30] Wellein G and Fehske H 1997 Phys. Rev. B 56 4513 [31] Fehske H, Loos J and Wellein G 2000 Phys. Rev. B 61 8016 [32] Wang K L, Chen Q H and Wan S L 1994 Phys. Lett. A 185 216 [33] Chen Q H, Fang M H and Zhang Q R 1996 Phys. Rev. B 53 11296 [34] Kornilovitch P E 2000 Phys. Rev. Lett. 84 1551 [35] Wan S L and Wang K L 2000 Chin. Phys. Lett. 17 129 [36] Ren Q B and Chen Q H 2005 Chin. Phys. Lett. 22 2914 [37] Ivanov V A, Zhuravlev M Y, Muragama Y and Nakajima S 1996 JETP Lett. 64 148 [38] Ren X Z, Liao X, Liu T and Wang K L 2006 Acta. Phys. Sin. 55 2865 (in Chinese) [39] Liang X X and Ban S L 2004 Chin. Phys. B 13 71 [40] Wang Z G, Duan S Q and Zhao Z G 2005 Chin. Phys. B 14 1332 [41] Liu W Y, An Y Y and Yan Z Y 2007 Chin. Phys. B 16 3704 [42] Zheng H 1988 Phys. Rev. B 37 7419 [43] Zheng H, Feinberg D and Avignon M 1989 Phys. Rev. B 39 9405 [44] Feinberg D, Ciuchi S and Pasquale F D 1990 Int. J. Mode. Phys. B 04 1317 [45] Luo Z H, Yu C F and Lin Q W 2011 Acta Phys. Sin. 60 057104 (in Chinese) [46] Luo Z H, Cao Z J and Yu C F 2011 Chin. Phys. B 20 067103 [47] Luo Z H and Liang G D 2012 Acta Phys. Sin. 61 057303 (in Chinese) [48] Luo Z H 2013 Acta Phys. Sin. 62 207201 (in Chinese) [49] Pang X F 1999 Phys. Lett. A 259 466 [50] Pang X F 2001 J. Phys. Chem. Solids 62 491 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|