Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 038503    DOI: 10.1088/1674-1056/26/3/038503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An improved design for AlGaN solar-blind avalanche photodiodes with enhanced avalanche ionization

Yin Tang(汤寅)1, Qing Cai(蔡青)1, Lian-Hong Yang(杨莲红)2, Ke-Xiu Dong(董可秀)3, Dun-Jun Chen(陈敦军)1, Hai Lu(陆海)1, Rong Zhang(张荣)1, You-Dou Zheng(郑有炓)1
1 Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Department of Physics, Changji College, Changji 831100, China;
3 School of Mechanical and Electronic Engineering, Chuzhou University, Chuzhou 239000, China
Abstract  

To enhance the avalanche ionization, we designed a new separate absorption and multiplication AlGaN solar-blind avalanche photodiode (APD) by using a high/low-Al-content AlGaN heterostructure as the multiplication region instead of the conventional AlGaN homogeneous layer. The calculated results show that the designed APD with Al0.3Ga0.7N/Al0.45Ga0.55N heterostructure multiplication region exhibits a 60% higher gain than the conventional APD and a smaller avalanche breakdown voltage due to the use of the low-Al-content Al0.3Ga0.7N which has about a six times higher hole ionization coefficient than the high-Al-content Al0.45Ga0.55N. Meanwhile, the designed APD still remains a good solar-blind characteristic by introducing a quarter-wave AlGaN/AlN distributed Bragg reflectors structure at the bottom of the device.

Keywords:  AlGaN      deep ultraviolet      photoelectric detector      distributed Bragg reflector  
Received:  11 June 2016      Revised:  12 December 2016      Accepted manuscript online: 
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
Fund: 

Project supported by the State Key Project of Research and Development Plan, China (Grant No. 2016YFB0400903), the National Natural Science Foundation of China (Grant Nos. 61634002, 61274075, and 61474060), the Key Project of Jiangsu Province, China (Grant No. BE2016174), the Anhui University Natural Science Research Project, China (Grant No. KJ2015A153), the Open Fund (KFS) of State Key Lab of Optical Technologieson Nanofabrication and Micro-engineering, Institute of Optics and Electronics, Chinese Academy of Science.

Corresponding Authors:  Dun-Jun Chen     E-mail:  djchen@nju.edu.cn

Cite this article: 

Yin Tang(汤寅), Qing Cai(蔡青), Lian-Hong Yang(杨莲红), Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓) An improved design for AlGaN solar-blind avalanche photodiodes with enhanced avalanche ionization 2017 Chin. Phys. B 26 038503

[1] Pau J L, Bayram C, McClintock R, Razeghi M and Silversmith D 2008 Appl. Phys. Lett. 92 101120
[2] Wang X D, Hu W D, Pan M, Hou L W, Xie W, Xu J T, Li X Y, Chen X S and Lu W 2014 J. Appl. Phys. 115 013103
[3] Bulmer J, Suvarna P, Leathersich J, Marini J, Mahaboob I, Newman N and Shadi F 2016 IEEE Photon. Technol. Lett. 28 1
[4] McIntosh K A, Molnar R J, Mahoney L J, Lightfoot A, Geis M W, Molvar K M, MeIngailis I, Aggarwal R L, Goodhue W D, Choi S S, Spears D L and Verghese S 1999 Appl. Phys. Lett. 75 3485
[5] Carrano J C, Lambert D J H, Eiting C J, Collins C J, Li T, Wang S, Yang B, Beck A L, Dupuis R D and Campbell J C 2000 Appl. Phys. Lett. 76 924
[6] Limb J B, Yoo D, Ryou J H, Lee W, Shen S C, Dupuis R D, Reed M L, Collins C J, Wraback M, Hanser M, Preble E, Williams N M and Evans K 2006 Appl. Phys. Lett. 89 011112
[7] Vashaei Z, Cicek E, Bayram C, McClintock R and Razeghi M 2010 Appl. Phys. Lett. 96 201908
[8] Bayram C, Pau J L, McClintock R, Razeghi M, Ulmer M P and Silversmith D 2008 Appl. Phys. Lett. 93 211107
[9] Kim J, Ji M H, Detchprohm T, Dupuis R D, Ryou J H, Sood A K, Dhar N D and Lewis J 2015 Appl. Phys. Express 8 122202
[10] Pau J L, McClintock R, Minder K, Bayram C, Kung P, Razeghi M, Munoz E and Silversmith D 2007 Appl. Phys. Lett. 91 041104
[11] Mcclintock R, Yasan A, Minder K, Kung P and Razeghi M 2005 Appl. Phys. Lett. 87 241123
[12] Tut T, Gokkavas M, Inal A and Ozbay E 2007 Appl. Phys. Lett. 90 163506
[13] Huang Y, Chen D J, Lu H, Dong K X, Zhang R, Zheng Y D, Li L and Li Z H 2012 Appl. Phys. Lett. 101 253516
[14] Huang Z Q, Li J F, Zhang W L and Jiang H 2013 Appl. Phys. Express 6 054101
[15] Shao Z G, Chen D J, Lu H, Zhang R, Cao D P, Luo W J, Zheng Y D, Li L and Li Z H 2014 IEEE Electron Device Lett. 35 372
[16] Sun L, Chen J L, Li J F and Jiang H 2010 Appl. Phys. Lett. 97 191103
[17] Yang B, Li T, Heng K, Collins C, Wang S, Carrano J C, Dpuis R D, Campbell J C, Schurman M J and Ferguson I T 2000 IEEE J. Quantum Electron 36 1229
[18] Bellotti E, Bertazzi F, Shishehchi S, Matsubara M and Goano M 2013 IEEE Trans. Electron Devices 60 3204
[19] Dong K X, Chen D J, Lu H, Liu B, Han P, Zhang R and Zheng Y D 2013 IEEE Photon. Technol. Lett. 25 1510
[20] Mitrofanov O, Schmult S, Manfra M J, Siegrist T, Weimann N G, Sergent A M and Molnar R J 2006 Appl. Phys. Lett. 88 171101
[21] Ji X L, Jiang R L, Liu B, Xie Z L, Zhou J J, Li L, Han P, Zhang R, Zheng Y D and Zheng J G 2008 Phys. Stat. Sol. (A) 205 1572
[22] Brunner D, Angerer H, Bustarret E, Freudenberg F, Hopler R, Dimitrov R, Ambacher O and Stutzmann M 1997 J. Appl. Phys. 82 5090
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[3] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[4] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[5] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[6] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[7] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[8] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[9] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[10] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[11] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[12] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[13] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[14] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[15] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
No Suggested Reading articles found!