Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 023301    DOI: 10.1088/1674-1056/26/2/023301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field

Chun-Zhen Fan(范春珍)1, Shuang-Mei Zhu(朱双美)1,2, Hao-Yi Xin(辛昊毅)1
1 School of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450052, China;
2 College of Science, Henan Institute of Engineering, Zhengzhou 451191, China
Abstract  We experimentally fabricate a non-spherical Ag and Co surface-enhanced Raman scattering (SERS) substrate, which not only retains the metallic plasmon resonant effect, but also possesses the magnetic field controllable characteristics. Raman detections are carried out with the test crystal violet (CV) and rhodamine 6G (R6G) molecules with the initiation of different magnitudes of external magnetic field. Experimental results indicate that our prepared substrate shows a higher SERS activity and magnetic controllability, where non-spherical Ag nanoparticles are driven to aggregate effectively by the magnetized Co and plenty of hot-spots are built around the metallic Ag nanoparticles, thereby leading to the enhancement of local electromagnetic field. Moreover, when the external magnetic field is increased, our prepared substrate demonstrates excellent SERS enhancement. With the 2500 Gs and 3500 Gs (1 Gs=10-4 T) magnetic fields, SERS signal can also be obtained with the detection limit lowering down to 10-9 M. These results indicate that our proposed magnetic field controlled substrate enables us to freely achieve the enhanced and controllable SERS effect, which can be widely used in the optical sensing, single molecule detection and bio-medical applications.
Keywords:  magneto-optical materials      tunable      surface-enhanced Raman scattering  
Received:  11 August 2016      Revised:  15 November 2016      Accepted manuscript online: 
PACS:  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
  52.38.Bv (Rayleigh scattering; stimulated Brillouin and Raman scattering)  
  68.49.-h (Surface characterization by particle-surface scattering)  
Fund: Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant No. 162102210164), the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002), the National Natural Science Foundations of China (Grant Nos. 11574276, 11404291, and 11604079), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 17HASTIT0).
Corresponding Authors:  Chun-Zhen Fan     E-mail:  chunzhen@zzu.edu.cn

Cite this article: 

Chun-Zhen Fan(范春珍), Shuang-Mei Zhu(朱双美), Hao-Yi Xin(辛昊毅) Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field 2017 Chin. Phys. B 26 023301

[1] Kim Z H 2014 Front. Phys. 9 25
[2] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[3] Fang Y, Zhang Z and Sun M 2016 Rev. Sci. Instrum. 87 033104
[4] Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E and Li T 2005 Phys. Chem. B 109 13857
[5] Chang S, Ko H, Gunawidjaj R and Tsukruk V V 2011 J. Phys. Chem. C 115 4387
[6] Botta R, Upender G, Sathyavathi R, Rao D N and Bansal C 2013 Mater. Chem. Phys. 137 699
[7] Tian C F, You H J and Fang J X 2014 Chin. Phys. B 23 087801
[8] Liu M, Sun L, Cheng C, H Hu, Shen Z and Fan H J 2011 Nanoscale 3 3627
[9] Li X, Hu H, Li D, Shen Z, Xiong Q, Li Su and Fan H J 2012 Appl. Mater. Interf. 4 2180
[10] Huang Y F, Zhu H P, Liu G K, Wu D Y, Ren B and Tian Z Q 2010 J. Am. Chem. Soc. 132 9244
[11] Yang Z, Zhang L, You H, Li Z, Fang J 2014 Part. Part. Syst. Charact. 31 390
[12] You H, Zhang F, Liu Z, and Fang J 2014 ACS Catal. 4 2829
[13] Liu Z, Zhang F, Yang Z, You H, Tian C, Li Z and Fang J 2013 J. Mater. Chem. C 1 5567
[14] Huang X J, Yarimag O, Kim J H and Choi Y K 2009 J. Mater. Chem. 19 478
[15] Wang L, Imura M and Yamauchi Y 2012 Cryst. Eng. Comm. 14 7594
[16] Tian Z Q, Yang Z L, Ren B, Li J F, Zhang Y, Lin X F, Hu J W and Wu D Y 2006 Faraday Discuss. 132 159
[17] Sajanlal P R, Sreeprasad T S, Samal A K and Pradeep T 2011 Nano Rev. 2 5883
[18] Liu D, Li C, Zhou F, Zhang T, Zhang H, Li X, Duan G, W Cai and Y Li 2015 Sci. Rep. 5 7686
[19] Hartland G, Okamoto H, Orrit M and Zijlstra P 2013 Phys. Chem. Chem. Phys. 15 4090
[20] Zhao J, Lin J, Li X, Zhao G and Zhang W 2015 Appl. Surf. Sci. 347 514
[21] Ma F D, Wang S J, Smith L and Wu N 2012 Adv. Func. Mater. 22 4334
[22] Zhu S M, Fan C Z, Wang J Q, He J N and Liang E J 2015 J. Colloid Interface Sci. 438 116
[23] Huang J P and Yu K W 2006 Phys. Rep. 431 87
[24] Guo H Y, Zhao A W, Gao Q, Li D, Zhang M F, Gan Z B, Wang D P, Tao W Y and Chen X C 2014 J. Nanopart. Res. 16 2538
[25] Yan J M, Zhang X B, Akita T, Haruta M and Xu Q 2010 J. Am. Chem. Soc. 132 5326
[26] McKeown J T, Wu Y Y, Fowlkes J D, Rack P D and Campbell G H 2015 Adv. Mater. 27 1060
[27] Takahashi M, Mohan P, Nakade A, Higashimine K, Mott D, Hamada T, Matsumura K, Taguchi T and Maenosono S Y 2015 Langmuir 31 2228
[28] Zhu S M, Fan C Z, Wang J Q, He J N and Liang E J 2015 J. Colloid Interface Sci. 438 116
[29] Liang X M and Zhao L J 2012 RSC Adv. 2 5485
[30] Sun Y and Xia Y N 2007 Acc. Chem. Res. 40 1067
[31] Wiley B, Herricks T, Sun Y and Xia Y 2004 Nano Lett. 4 1733
[32] Zhou F, Li Z and Liu Y 2008 J. Phys. Chem. C 112 20233
[33] Creighton J A and Eadon D G 1991 Faraday Trans. 87 3881
[34] Zhang J and Lan C Q 2008 Mater. Lett. 62 1521
[35] You H, Ji Y, Wang L, Yang S, Yang Z, Fang J, Song X and Ding B 2012 J. Mater. Chem. 22 1998
[36] Kudelski A 2005 Chem. Phys. Lett. 414 271
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[3] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[4] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[5] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[6] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[7] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[8] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[9] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[10] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[11] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[12] Electrically-manipulable electron-momentum filter based on antiparallel asymmetric double δ-magnetic-barrier semiconductor microstructure
Ge Tang (唐鸽), Ying-Jie Qin(覃英杰), Shi-Shi Xie(谢诗诗), and Meng-Hao Sun(孙梦豪). Chin. Phys. B, 2021, 30(10): 107303.
[13] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[14] Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating
Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2020, 29(8): 084208.
[15] 575-fs passively mode-locked Yb:CaF2 ceramic laser
Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧). Chin. Phys. B, 2020, 29(7): 074205.
No Suggested Reading articles found!