Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 028503    DOI: 10.1088/1674-1056/26/2/028503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Spin transfer torque in the semiconductor/ferromagnetic structure in the presence of Rashba effect

Javad Vahedi, Sahar Ghasab Satoory
Department of Physics, Islamic Azad University, Sari Branch, Sari, Iran
Abstract  Spin transfer torque in magnetic structure occurs when the transverse component of the spin current that flows from the nonmagnetic medium to ferromagnetic medium is absorbed by the interface. In this paper, considering the Rashba effect on the semiconductor region, we discuss the spin transfer torque in semiconductor/ferromagnetic structure and obtain the components of spin-current density for two models: (i) single electron and (ii) the distribution of electrons. We show that no matter whether the difference in Fermi surface between semiconductor and Fermi spheres for the up and down spins in ferromagnetic increases, the transmission probability decreases. The obtained results for the values used in this article illustrate that Rashba effect increases the difference in Fermi sphere between semiconductor and Fermi sphere for the up and down spins in ferromagnetic. The results also show that the Rashba effect, brings an additional contribution to the components of spin transfer torque, which does not exist in the absence of the Rashba interaction. Moreover, the Rashba term has also different effects on the transverse components of the spin torque transfer.
Keywords:  spin transfer torque      Rashba interaction      ferromagnetic  
Received:  22 July 2016      Revised:  01 November 2016      Accepted manuscript online: 
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  72.25.-b (Spin polarized transport)  
  73.40.Gk (Tunneling)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
Corresponding Authors:  Javad Vahedi     E-mail:  javahedi@gmail.com

Cite this article: 

Javad Vahedi, Sahar Ghasab Satoory Spin transfer torque in the semiconductor/ferromagnetic structure in the presence of Rashba effect 2017 Chin. Phys. B 26 028503

[1] Slonczewski J C and Magn J M 1996 Mater. 159 L1
[2] Berger L 1996 Phys. Rev. B 54 9353
[3] Stiles M D and Zangwill A 2002 Phys. Rev. B 66 014407
[4] Bercioux D and Lucignano P 2015 Rep. Prog. Phys. 78 106001
[5] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R 2015 Nat. Mater. 14 871
[6] Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
[7] Fujita T, Jalil M B, Tan S G and Murakami S 2011 J. Appl. Phys 110 121301
[8] Gisi B, Sakiroglu S and Sokmen İ 2016 Chin. Phys. B 25 017103
[9] Zhaoa T H, Xuea Z L, Mana S and Juna L J 2015 Chin. Phys. B 24 030303
[10] Di L H, Hua C Y, Fu L H, Shuai T H and Hua W J 2014 Chin. Phys. B 23 077101
[11] Tan S G, Jalil M B A, Fujita T and Liud X J 2007 Ann. Phys. 326 207
[12] Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Gambardella P 2010 Nat. Mater. 9 230
[13] Tsutsui K and Murakami S 2012 Phys. Rev. B 86 115201
[14] Chen J, Jalil M B A and Tan S G 2012 AIP Adv. 2 042133
[15] Molenkamp L W, Schmidt G and Bauer G E W 2001 Phys. Rev. B 64 121202
[16] Rowe A C H, Nehls J, Stradling R A and Ferguson R S 2001 Phys. Rev. B 63 201307
[17] Ralph D C and Stiles M D 2009 J. Magn. Magn. Mater. 321 2508
[18] Myers E B, Ralph D C, Katine J A, Louie R N and Buhrman R A 1999 Science 285 867
[19] Katine J A, Albert F J, Buhrman R A, Myers E B and Ralph D C 2000 Phys. Rev. Lett. 84 3149
[20] Grollier J, Cros V, Hamzic A, George J M, Jaffres H, Fert A, Faini G, Youssef J B and Legall H 2001 Appl. Phys. Lett. 78 3663
[1] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[2] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[3] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[4] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[7] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[8] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[9] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[10] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[11] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[12] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[13] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[14] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
[15] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
No Suggested Reading articles found!