Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 028502    DOI: 10.1088/1674-1056/26/2/028502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improvement of the carrier distribution with GaN/InGaN/AlGaN/InGaN/GaN composition-graded barrier for InGaN-based blue light-emitting diode

Min Guo(郭敏)1,2, Zhi-You Guo(郭志友)1,2, Jing Huang(黄晶)1, Yang Liu(刘洋)1,2, Shun-Yu Yao(姚舜禹)1
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Guangzhou 510631, China;
2 Institute of the Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631, China
Abstract  InGaN light-emitting diodes (LEDs) with GaN/InGaN/AlGaN/InGaN/GaN composition-graded barriers are proposed to replace the sixth and the middle five GaN barriers under the condition of removing the electron blocking layer (EBL) and studied numerically in this paper. Simulation results show that the specially designed barrier in the sixth barrier is able to modulate the distributions of the holes and electrons in quantum well which is adjacent to the specially designed barrier. Concretely speaking, the new barrier could enhance both the electron and hole concentration remarkably in the previous well and reduce the hole concentration for the latter one to some extent along the growth direction. What is more, a phenomenon, i.e., a better carrier distribution in all the wells, just appears with the adoption of the new barriers in the middle five barriers, resulting in a much higher light output power and a lower efficiency droop than those in a conventional LED structure.
Keywords:  composition-graded barriers      light-emitting diodes      carrier distribution  
Received:  21 July 2016      Revised:  29 October 2016      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  87.15.A- (Theory, modeling, and computer simulation)  
  78.60.Fi (Electroluminescence)  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the Science and Technology Program Project for the Innovation of Forefront and Key Technology of Guangdong Province, China (Grant No. 2014B010121001), the Special Funds for Strategic Emerging Industries of Guangdong Province, China (Grant No. 2012A080304006), the Special Funds for the Innovation of Forefront and Key Technology of Guangdong Province, China (Grant No. 2014B010119004), the Science and Technology Program Project for High Conversion Efficiency and Application of Direct Driver High-end LED Chip of Guangdong Province, China (Grant No. 2013B010204065), the Special Project for Key Science and Technology of Zhongshan City, Guangdong Province, China (Grant No. 2014A2FC204), and the Science and Technology Program Project in Huadu District of Guangzhou City, China (Grant No. HD15PT003).
Corresponding Authors:  Zhi-You Guo     E-mail:  guozy@scnu.edu.cn

Cite this article: 

Min Guo(郭敏), Zhi-You Guo(郭志友), Jing Huang(黄晶), Yang Liu(刘洋), Shun-Yu Yao(姚舜禹) Improvement of the carrier distribution with GaN/InGaN/AlGaN/InGaN/GaN composition-graded barrier for InGaN-based blue light-emitting diode 2017 Chin. Phys. B 26 028502

[1] Gardner N F, Müller G O, Shen Y C, Chen G, Watanabe S, Götz W, and Krames M R 2007 Appl. Phys. Lett. 91 243506
[2] Xu J, Schubert M F, Noemaun A N, Zhu D, Kim J K, Schubert E F, Kim M H, Chung H J, Yoon S, Sone C and Park Y J 2009 Appl. Phys. Lett. 94 011113
[3] Wang J X, Wang L, Wang L, Hao Z, Luo Y, Dempewolf A, Müller M, Bertram F and Christen 2012 J. Appl. Phys. 112 021307
[4] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[5] Xie J, Ni X, Fan Q and Shimada R 2008 Appl. Phys. Lett. 93 121107
[6] Ni X, Fan Q, Shimada R, Ozgur U and Morkoc H 2008 Appl. Phys. Lett. 93 171113
[7] David A, Grundmann M J, Kaeding J F, Gardner N F and Mihopoulos T G 2008 Appl. Phys. Lett. 92 053502
[8] Yang W, Li D, He J and Hu X 2013 Phys. Status Solidi 10 10
[9] Lu T P, Li S T, Zhang K, Liu, Xiao G W and Zhou Y G 2011 Chin. Phys. B 20 098503
[10] Guo Y, Liang M, Fu J, Liu Z, Yi X, Wang J, Wang G H and Li J M 2015 AIP Adv. 5 037131
[11] Chen Z, Yang W, Liu L, Wan C H, Li L, He Y F, Liu N Y, Wang L, Li D, Chen W H and Hu X D 2012 Chin. Phys. B 21 108505
[12] Kuo Y K, Wang T H and Chang J Y 2012 J. Quantum Electron. 48 946
[13] Xiong J Y, Xu Y Q, Zheng S W, Fan G H and Zhang T 2014 Appl. Phys. A 114 309
[14] Cheng L W, Wu S D, Xia C S and Chen H T 2015 J. Appl. Phys. 118 103103
[15] Yan Q R, Zhang Y and Li J Z 2014 Optoelec. Lett. 10 258
[16] Pan C C, Yan Q, Fu H and Zhao Y 2015 Electron. Lett. 51 1187
[17] Chung H Y, Woo K Y, Su J K and Kim T G 2014 Opt. Commun. 33 282
[18] Yang Y and Zeng Y 2015 Physica Status Solidi Applications & Materials 212 1805
[19] Park J H, Kim Y D, Hwang S, Meyaard D, Fred S E and Dae H Y, Choi J W, Cho J and Kim J K 2013 Appl. Phys. Lett. 103 061104
[20] Fiorentin V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
[21] Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
[22] Edgar J H 1994 Properties of Group III Nitrides (London: INSPEC)
[23] Tsubouchi K, Sugai K and Mikoshiba N 1981 IEEE Ultrason. Symp. 1 375
[24] Wright A F 1997 J. Appl. Phys. 82 2833
[25] Takagi Y, Ahart M, Azuhato T, Sota T, Suziki K and Nakamura S 1996 Physica B 219 547
[26] Sheleg A U and Savastenko V A 1979 Neorg. Mater. 15 1598
[27] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and J. Hilsenbeck 1999 J. Appl. Phys. 85 3222
[1] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[2] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[3] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[4] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[5] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[6] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[7] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[8] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
[9] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[10] Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer
Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Wen-Xiao Hu(胡文晓), Guang Li(李光), Xing-Jun Luo(罗幸君), Hu Wang(汪虎), Jia-Kai Xiao(肖稼凯), Jia-Qi Guo(郭佳琦), Xing-Fu Wang(王幸福), Rui Hao(郝锐), Han-Xiang Yi(易翰翔), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(1): 018503.
[11] Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes
Abida Perveen, Xin Zhang(张欣), Jia-Lun Tang(汤加仑), Deng-Bao Han(韩登宝), Shuai Chang(常帅), Luo-Gen Deng(邓罗根), Wen-Yu Ji(纪文宇), Hai-Zheng Zhong(钟海政). Chin. Phys. B, 2018, 27(8): 086101.
[12] Silica encapsulated ZnO quantum dot-phosphor nanocomposites: Sol-gel preparation and white light-emitting device application
Ya-Chuan Liang(梁亚川), Kai-Kai Liu(刘凯凯), Ying-Jie Lu(卢英杰), Qi Zhao(赵琪), Chong-Xin Shan(单崇新). Chin. Phys. B, 2018, 27(7): 078102.
[13] High mobility ultrathin ZnO p-n homojunction modulated by Zn0.85Mg0.15O quantum barriers
Jing-Jing Yang(杨景景), Qing-Qing Fang(方庆清), Wen-Han Du(杜文汉), Ke-Ke Zhang, Da-Shun Dong(董大舜). Chin. Phys. B, 2018, 27(3): 037804.
[14] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[15] Improvement of green InGaN-based LEDs efficiency using a novel quantum well structure
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Ziguang Ma(马紫光), Haiyan Wu(吴海燕), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2017, 26(8): 087311.
No Suggested Reading articles found!