Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027105    DOI: 10.1088/1674-1056/26/2/027105
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

On the reverse leakage current of Schottky contacts on free-standing GaN at high reverse biases

Yong Lei(雷勇), Jing Su(苏静), Hong-Yan Wu(吴红艳), Cui-Hong Yang(杨翠红), Wei-Feng Rao(饶伟锋)
Department of Materials Physics, School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract  In this work, a dislocation-related tunneling leakage current model is developed to explain the temperature-dependent reverse current-voltage (I-V-T) characteristics of a Schottky barrier diode fabricated on free-standing GaN substrate for reverse-bias voltages up to -150 V. The model suggests that the reverse leakage current is dominated by the direct tunneling of electrons from Schottky contact metal into a continuum of states associated with conductive dislocations in GaN epilayer. A reverse leakage current ideality factor, which originates from the scattering effect at metal/GaN interface, is introduced into the model. Good agreement between the experimental data and the simulated I-V curves is obtained.
Keywords:  homoepitaxial GaN      Schottky contact      leakage current      tunneling      dislocations      ideality factor  
Received:  23 August 2016      Revised:  01 November 2016      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.50.-h (Electronic transport phenomena in thin films)  
Corresponding Authors:  Yong Lei     E-mail:  leiyong@nuist.edu.cn

Cite this article: 

Yong Lei(雷勇), Jing Su(苏静), Hong-Yan Wu(吴红艳), Cui-Hong Yang(杨翠红), Wei-Feng Rao(饶伟锋) On the reverse leakage current of Schottky contacts on free-standing GaN at high reverse biases 2017 Chin. Phys. B 26 027105

[1] Chu R, Shen L, Fichtenbaum N, Brown D, Keller S and Mishra U K 2008 IEEE Electron Dev. Lett. 29 297
[2] Lu W, Wang L Q, Gu S Y, Aplin D P R, Estrada D M, Yu P K L and Asbeck P M 2011 IEEE Trans. Electron Dev. 58 1986
[3] Liu J, Hao Y, Feng Q, Wang C, Zhang J C and Guo L L 2007 Acta Phys. Sin. 56 3483 (in Chinese)
[4] Wang Y Q, Alur S, Sharma Y, Tong F, Thapa R, Gartland P, Issacs-Smith T, Ahyi C, Williams J, Park M, Johnson M, Paskova T, Preble E A and Evans K R 2011 Semicond. Sci. Technol. 26 022002
[5] Lei Y, Lu H, Cao D S, Chen D J, Zhang R and Zheng Y D 2013 Solid State Electron. 82 63
[6] Hsu J W P, Manfra M J, Molnar R J, Heying B and Speck J S 2002 Appl. Phys. Lett. 81 79
[7] Koley G, M. G. Spencer M G 2001 Appl. Phys. Lett. 78 2873
[8] Kim B, Moon D, Joo K, Oh S, Lee Y K, Park Y, Nanishi Y and Yoon E 2014 Appl. Phys. Lett. 104 102101
[9] Simpkins B S, Schaadt D M, Yu E T and Molnar R J 2002 J. Appl. Phys. 91 9924
[10] Zhang H, Miller E J and Yu E T 2006 J. Appl. Phys. 99 023703
[11] Witowski A M, Pakula K, Baranowski J M, Sadowski M L and Wyder P 1999 Appl. Phys. Lett. 75 4154
[12] Mochizuki K, Terano A, Kaneda N, Mishima T, Ishigaki T and Tsuchiya T 2011 Appl. Phys. Express 4 024104
[13] Suresh S, Balaji M, Ganesh V and Baskar K 2010 J. Alloys Compd. 506 615
[14] Chu R, Suh C S, Wong M H, Fichtenbaum N, Brown D, McCarthy L, Keller S, Wu F, Speck J S and Mishra U K 2007 IEEE Electron Dev. Lett. 28 781
[15] Reddy V R, Reddy S R and Rao P K 2010 Microelectron. Eng. 87 117
[16] Liu F, Wang T, Shen B, Huang S, Lin F, Ma N, Xu F J, Wang P and Yao J Q 2009 Chin. Phys. B 18 1618
[17] Lv Y, Lin Z, Zhang Y, Meng L, Luan C, Cao Z, Chen H and Wang Z 2011 Appl. Phys. Lett. 98 123512
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[4] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[5] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[6] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[7] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[8] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[9] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[10] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[11] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[12] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[13] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
No Suggested Reading articles found!