Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027301    DOI: 10.1088/1674-1056/26/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photon-assisted and spin-dependent shot noise in magnetic-field tunable ZnSe/Zn1-xMnxSe structures

Chun-Lei Li(李春雷)1, Yong Guo(郭永)2,3, Xiao-Ming Wang(王小明)4, Yuan Lv(律原)1
1 Laboratory for Micro-sized Functional Materials, College of Elementary Education, Capital Normal University, Beijing 100048, China;
2 Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing, China;
4 The High School Affiliated to China University of Geosciences, Beijing 100083, China
Abstract  We have investigated the photon-assisted shot noise properties in the magnetic field tunable heterostructures.} Transport properties of the model structure are strongly dependent on the oscillatory field and the magnetic field. In this structure, electrons can absorb or emit one or multi-photons to reach the quasi-bound state. As a result, the transmission properties are affected considerably by photon-assisted tunneling and these features cause the nontrivial variations in the shot noise and Fano factor. It is found that the shot noise becomes spin-dependent and can be modulated not only by the magnetic field, but also by the oscillatory field. Both the spin-up and spin-down components of the shot noise can be greatly suppressed by the magnetic field, and can also be drastically enhanced by the harmonically driven field. Furthermore, with increasing external magnetic field, it is important to note that the enhanced intensity is decreased, even suppressed. These results suggest another method to suppress the shot noise via modulating the oscillatory field at a diluted-magnetic-semiconductors/semiconductor structure.
Keywords:  shot noise      electronic transport      photon-assisted  
Received:  29 September 2016      Revised:  22 November 2016      Accepted manuscript online: 
PACS:  73.21.Ac (Multilayers)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  73.50.Td (Noise processes and phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574173), the National Basic Research Program of China (Grant No. 2011CB606405), and the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (Grant No. KM201410028021).
Corresponding Authors:  Chun-Lei Li     E-mail:  licl@cnu.edu.cn

Cite this article: 

Chun-Lei Li(李春雷), Yong Guo(郭永), Xiao-Ming Wang(王小明), Yuan Lv(律原) Photon-assisted and spin-dependent shot noise in magnetic-field tunable ZnSe/Zn1-xMnxSe structures 2017 Chin. Phys. B 26 027301

[1] Brandes T 1996 Europhys. Lett. 33 629
[2] Wagner M 1994 Phys. Rev. B 49 16544
[3] Wagner M and Zwerger W 1997 Phys. Rev. B 55 R10217
[4] Wagner M 1998 Phys. Rev. B 57 11899
[5] Pérez del Valle C, Lefebvre R and Atabek O 1999 Phys. Rev. A 59 3701
[6] Zhang C X, Nie Y H, and Liang J Q 2006 Phys. Rev. B 73 085307
[7] Ye C Z, Zhang C X, Nie Y H and Liang J Q 2007 Phys. Rev. B 76 035345
[8] Tang H Z, An X T, Wang A K and Liu J J 2014 J. Appl. Phys. 116 063708
[9] Yuan R Y, Zhu G B, Zhao X, Guo Y, Yan H, Sun Q and Ji A C 2014 Phys. Rev. B 89 195301
[10] Shibata K, Umeno A, Cha K M and Hirakawa K 2012 Phys. Rev. Lett. 109 077401
[11] Gaj J A, Ginter J and Galazka R R 1978 Phys. Status Solid B 89 655
[12] Douglas K, Nakashima S and Scott J F 1984 Phys. Rev. B 29 5602
[13] Egues J Carlos 1998 Phys. Rev. Lett. 80 4578
[14] Guo Y, Gu B L, Wang H and Kawazoe Y 2001 Phys. Rev. B 63 214415
[15] Guo Y, Lu J Q, Gu B L and Kawazoe Y 2001 Phys. Rev. B 64 155312
[16] Guo Y, Chen X Y, Zhai F, Gu B L and Kawazoe Y 2002 Appl. Phys. Lett. 80 4591
[17] Guo Y, Shang C E and Chen X Y 2005 Phys. Rev. B 72 045356
[18] Li C L, Yuan R Y and Guo Y 2016 J. Appl. Phys. 119 014306
[19] Zhu Z G and Su G 2004 Phys. Rev. B 70 193310
[20] Blanter Ya M and Büttiker M 2000 Phys. Rep. 336 1
[21] Zhu R and Guo Y 2007 Appl. Phys. Lett. 90 232104
[22] Guo Y, Han L, Zhu R and Xu W 2008 Eur. Phys. J. B 62 45
[23] Liu K, Xia K and Bauer G E W 2012 Phys. Rev. B 86 020408
[24] Mishchenko E G 2003 Phys. Rev. B 68 100409(R)
[25] Egues J Carlos, Burkard Guido and Loss Daniel 2002 Phys. Rev. Lett. 89 176401
[26] Egues J Carlos, Burkard Guido, Saraga D S, Schliemann John and Loss Daniel 2005 Phys. Rev. B 72 235326
[27] Yu W Y, Twardowski A, Fu L P, Petrou A and Jonker B T 1995 Phys. Rev. B 51 9722
[28] Li W and Reichl L E 1999 Phys. Rev. B 60 15732
[29] Li C L and Xu Y 2010 Chin. Phys. B 19 057202
[30] Moskalets M and Büttiker M 2004 Phys. Rev. B 70 245305
[1] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[2] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[3] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[4] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[5] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[6] Signal-to-noise ratio of Raman signal measured by multichannel detectors
Xue-Lu Liu(刘雪璐), Yu-Chen Leng(冷宇辰), Miao-Ling Lin(林妙玲), Xin Cong(从鑫), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2021, 30(9): 097807.
[7] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[8] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[9] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[10] Effects of interface bound states on the shot noise in normal metal-low-dimensional Rashba semiconductor tunnel junctions with induced s-wave pairing potential
Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2019, 28(5): 057201.
[11] Cryogenic amplifier with low input-referred voltage noise calibrated by shot noise measurement
Wuhao Yang(杨伍昊), Jian Wei(危健). Chin. Phys. B, 2018, 27(6): 060702.
[12] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[13] Electronic states and spin-filter effect in three-dimensional topological insulator Bi2Se3 nanoribbons
Genhua Liu(刘根华), Pingguo Xiao(肖平国), Piaorong Xu(徐飘荣), Huiying Zhou(周慧英), Guanghui Zhou(周光辉). Chin. Phys. B, 2018, 27(1): 017304.
[14] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[15] Electronic transport properties of single-wall boron nanotubes
Xinyue Dai(代新月), Yi Zhou(周毅), Jie Li(李洁), Lishu Zhang(张力舒), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(8): 087310.
No Suggested Reading articles found!