Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117103    DOI: 10.1088/1674-1056/25/11/117103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain-induced magnetism in ReS2 monolayer with defects

Xiao-Ou Zhang(张小欧)1, Qing-Fang Li(李庆芳)2
1 Department of Electrical Engineering and Photoelectric Technology, Zijin College of Nanjing University of Science and Technology, Nanjing 210023, China;
2 Department of Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract  

We investigate the effects of strain on the electronic and magnetic properties of ReS2 monolayer with sulfur vacancies using density functional theory. Unstrained ReS2 monolayer with monosulfur vacancy (VS) and disulfur vacancy (V2S) both are nonmagnetic. However, as strain increases to 8%, VS-doped ReS2 monolayer appears a magnetic half-metal behavior with zero total magnetic moment. In particular, for V2S-doped ReS2 monolayer, the system becomes a magnetic semiconductor under 6% strain, in which Re atoms at vicinity of vacancy couple anti-ferromagnetically with each other, and continues to show a ferromagnetic metal characteristic with total magnetic moment of 1.60μ B under 7% strain. Our results imply that the strain-manipulated ReS2 monolayer with VS and V2S can be a possible candidate for new spintronic applications.

Keywords:  ReS2      first-principle calculations      strain      defect  
Received:  21 April 2016      Revised:  02 June 2016      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.At (Surface states, band structure, electron density of states)  
  75.50.Pp (Magnetic semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11547030).

Corresponding Authors:  Qing-Fang Li     E-mail:  qingfangli@nuist.edu.cn

Cite this article: 

Xiao-Ou Zhang(张小欧), Qing-Fang Li(李庆芳) Strain-induced magnetism in ReS2 monolayer with defects 2016 Chin. Phys. B 25 117103

[1] Castro Neto A H and Novoselov K 2011 Rep. Prog. Phys. 74 082501
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[3] Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W and Hone J 2010 Science 328 76
[4] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[5] Cheng F, Ren Y and Sun J F 2015 Chin. Phys. Lett. 32 107301
[6] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
[7] Xia H D, Li H P, Lan C Y, Li C, Deng G L, Li J F and Liu Y 2015 Chin. Phys. B 24 084206
[8] Zeng L, Xin Z, Chen S W, Du G, Kang J F and Liu X Y 2014 Chin. Phys. Lett. 31 027301
[9] Wang X R, Shi Y and Zhang R 2013 Chin. Phys. B 22 098505
[10] Mak K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[11] Shi H L, Pan H, Zhang Y W and Yakobson B I 2013 Phys. Rev. B 87 155304
[12] Coleman J N, Lotya M, O'Neill A, et al. 2011 Science 331 568
[13] Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
[14] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[15] Ellis J K, Lucero M J and Scuseria G E 2011 Appl. Phys. Lett. 99 261908
[16] Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J Y, Ogletree D F, Aloni S, Ji J, Li S S, Li J B, Peeters F M and Wu J Q 2014 Nat. Commun. 5 3252
[17] Fujita T, Ito Y, Tan Y W, Yamaguchi H, Hojo D, Hirata A, Voiry D, Chhowalla M and Chen M W 2014 Nanoscale 6 12458
[18] Feng Y Q, Zhou W, Wang Y J, Zhou J, Liu E F, Fu Y J, Ni Z H, Wu X L, Yuan H T, Miao F, Wang B G, Wan X G and Xing D Y 2015 Phys. Rev. B 92 054110
[19] Liu E F, Fu Y J, Wang Y J, et al. 2015 Nat. Commun. 6 6991
[20] Zhang E Z, Jin Y B, Yuan X, Wang W Y, Zhang C, Tang L, Liu S S, Zhou P, Hu W D and Xiu F X 2015 Adv. Funct. Mater. 25 4076
[21] Horzum S, Çakir D, Suh J, Tongay S, Huang Y S, Ho C H, Wu J, Sahin H and Peeters F M 2014 Phys. Rev. B 89 155433
[22] Çakir D, Sahin H and Peeters F M 2014 Phys. Chem. Chem. Phys. 16 16771
[23] Yu Z G, Cai Y Q and Zhang Y W 2015 Sci. Rep. 5 13783
[24] Zhang X O and Li Q F 2015 J. Appl. Phys. 118 064306
[25] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[26] Pearton S J, Abernathy C R, Overberg M E, Thaler G T, Norton D P, Theodoropoulou N, Hebard A F, Park Y D, Ren F, Kim J and Boatner L A 2003 J. Appl. Phys. 93 1
[27] MacDonald A H, Schiffer P and Samarth N 2005 Nat. Mater. 4 195
[28] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H and Awschalom D D 1999 Nature 402 790
[29] Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615
[30] Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503
[31] Lee C G, Wei X D, Kysar J W and Hone J 2008 Science 321 385
[32] Bertolazzi S, Brivio J and Kis A 2011 ACS Nano 5 9703
[33] Cooper R C, Lee C, Marianetti C A, Wei X D, Hone J and Kysar J W 2013 Phys. Rev. B 87 035423
[34] Tao P, Guo H H, Yang T and Zhang Z D 2014 J. Appl. Phys. 115 054305
[35] Zheng H L, Yang B S, Wang D D, Han R L, Du X B and Yan Y 2014 Appl. Phys. Lett. 104 132403
[36] Yun W S and Lee J D 2015 J. Phys. Chem. C 119 2822
[37] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[6] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[7] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[8] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[12] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[13] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[14] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[15] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
No Suggested Reading articles found!