CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Current spreading in GaN-based light-emitting diodes |
Qiang Li(李强)1,2, Yufeng Li(李虞锋)1,2, Minyan Zhang(张敏妍)2, Wen Ding(丁文)1,2, Feng Yun(云峰)1,2 |
1 Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi'an Jiaotong University, Xi'an 710049, China; 2 Solid-State Lighting Engineering Research Center, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract We have investigated the factors affecting the current spreading length (CSL) in GaN-based light-emitting diodes (LEDs) by deriving theoretical expressions and performing simulations with APSYS. For mesa-structure LEDs, the effects of both indium tin oxide (ITO) and n-GaN are taken into account for the first time, and a new Q factor is introduced to explain the effects of different current flow paths on the CSL. The calculations and simulations show that the CSL can be enhanced by increasing the thickness of the ITO layer and resistivity of the n-GaN layer, or by reducing the resistivity of the ITO layer and thickness of the n-GaN layer. The results provide theoretical support for calculating the CSL clearly and directly. For vertical-structure LEDs, the effects of resistivity and thickness of the CSL on the internal quantum efficiency (IQE) have been analyzed. The theoretical expression relating current density and the parameters (resistivity and thickness) of the CSL is obtained, and the results are then verified by simulation. The IQE under different current injection conditions is discussed. The effects of CSL resistivity play a key role at high current injection, and there is an optimal thickness for the largest IQE only at a low current injection.
|
Received: 30 January 2016
Revised: 27 July 2016
Accepted manuscript online:
|
PACS:
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032608), the National Natural Science Foundation of China (Grant No. 61404101), and the China Postdoctoral Science Foundation (Grant No. 2014M562415). |
Corresponding Authors:
Feng Yun
E-mail: fyun2010@mail.xjtu.edu.cn
|
Cite this article:
Qiang Li(李强), Yufeng Li(李虞锋), Minyan Zhang(张敏妍), Wen Ding(丁文), Feng Yun(云峰) Current spreading in GaN-based light-emitting diodes 2016 Chin. Phys. B 25 117102
|
[1] |
Kudry Y Y and Zinovchuk A V 2011 Semicond. Sci. Technol. 26 095007
|
[2] |
Liu H H, Chen P R, Lee G Y and Chyi J I 2011 IEEE Electron Dev. Lett. 32 1409
|
[3] |
Kim H, Park S J and Hwang H 2001 IEEE Trans. Electron Devices 48 1065
|
[4] |
Yun J S, Hwang S M and Shim J I 2007 Proc. SPIE 6841 68410L
|
[5] |
Chen J C, Shen G J, Hwu F S, Chen H I, Sheu J K, Lee T X and Sun C C 2009 Opt. Rev. 16 213
|
[6] |
Seo T H, Lee K J, Park A H, Hong C H, Suh E K, Chae S J, Lee Y H, Cuong T V, Pham V H, Chung J S, Kim E J and Jeon S R 2011 Opt. Express 19 23111
|
[7] |
Tun C J, Sheu J K, Pong B J, Lee M L, Lee M Y, Hsieh C K, Hu C C and Chi G C 2006 IEEE Photonics Technol. Lett. 18 274
|
[8] |
Seo D J, Shim J P, Choi S B, Seo T H, Suh E K and Lee D S 2012 Opt. Express 20 A991
|
[9] |
Perks R M, Porch A and Morgan D V 2006 J. Appl. Phys. 100 083109
|
[10] |
Cao X A, Stokes E B, Sandvik P, Taskar N, Kietchmer J and Walker D 2002 Solid State Electron. 46 1235
|
[11] |
Kim H, Cho J, Lee J W, Yoon S, Kim H, Sone C, Park Y and Seong T Y 2007 Appl. Phys. Lett. 90 063510
|
[12] |
Kim H and Lee S N 2010 J. Electrochem. Soc. 157 H562
|
[13] |
Wang P, Wei W, Cao B, Gan Z Y and Liu S 2010 Opt. Laser Technol. 42 737
|
[14] |
Huang S J, Fan B F, Chen Z M, Zheng Z Y, Luo H T and Wu Z S 2013 J. Display Technol. 9 266
|
[15] |
Li C K, Rosmeulen M, Simoen E and Wu Y R 2014 IEEE Trans. Electron Devices 61 511
|
[16] |
Li C K and Wu Y R 2012 IEEE Trans. Electron Devies 59 400
|
[17] |
Chandramohan S, Ko K B, Yang Y H, Ryu B D, Katharria Y S, Kim T Y, Cho B J and Hong C H 2014 J. Appl. Phys. 115 054503
|
[18] |
Kim S J, Kim K H and Kim T G 2013 Opt. Express 21 8062
|
[19] |
Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
|
[20] |
Iveland J, Martinelli L, Peretti J, Speck J S and Weisbuch C 2013 Phys. Rev. Lett. 110 177406
|
[21] |
Vampola K J, Iza M, Keller S, Denbaars S P and Nakamura S 2009 Appl. Phys. Lett. 94 061116
|
[22] |
Ryu H Y, Shin D S and Shim J I 2012 Appl. Phys. Lett. 100 131109
|
[23] |
Wu Y R, Shivaraman R, Wang K C and Speck J S 2012 Appl. Phys. Lett. 101 083505
|
[24] |
Wang L, Lu C, Lu J, Liu L, Liu N, Chen Y, Zhang Y, Gu E and Hu X 2011 Opt. Express 19 14182
|
[25] |
Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C and Park S J 2009 Appl. Phys. Lett. 94 231123
|
[26] |
Lin R M, Yu S F, Chang S J and Chiang T H 2012 Appl. Phys. Lett. 101 081120
|
[27] |
Ueda T, Ishida M, Tamura S, Fujimoto Y, Yuri M, Saito T and Ueda D 2003 Phys. Stat. Sol. C 7 2219
|
[28] |
Zhou L, Epler J E, Krames M R, Goetz W, Gherasimova M, Ren Z, Han J, Kneissl M and Johnson N M 2006 Appl. Phys. Lett. 89 241113
|
[29] |
Schubert E F 2006 Light-Emitting Diodes, 2nd edn (Cambridge:Cambridge University Press) p. 138
|
[30] |
Kudryk Y Y, Tkachenko A K and Zinovchuk A V 2012 Semicond. Sci. Technol. 27 055013
|
[31] |
Liu M L, Min Q Y and Ye Z Q 2012 Acta Phys. Sin. 61 178503(in Chinese)
|
[32] |
Wang J X, Wang L, Hao Z B and Luo Y 2011 Chin. Phys. Lett. 28 118105
|
[33] |
Huang K H, Yu J G, Kuo C P, Fletcher R M, Osentowski T D, Stinson L J, Craford M G and Liao A S H 1922 Appl. Phys. Lett. 61 1045
|
[34] |
Ebong A, Arthur S, Downey E, Cao X A, LeBoeuf S and Merfeld D W 2003 Solid State Electron. 47 1817
|
[35] |
Guo X and Schubert E F 2001 J. Appl. Phys. 90 4191
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|