Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 098101    DOI: 10.1088/1674-1056/25/9/098101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Mid/far-infrared photo-detectors based on graphene asymmetric quantum wells

E Ben Salem1,2, R Chaabani2, S Jaziri2,3
1. Institut Préparatoire aux Etudes d'Ingénieurs de Tunis, 2, Rue Jawaher Lel Nahrou Monfleury 1089, Tunisie;
2. Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire 2092, Tunisie;
3. Département de Physique, Faculté des Sciences de Bizerte, Jarzouna 7021, Bizerte
Abstract  

We conducted a theoretical study on the electronic properties of a single-layer graphene asymmetric quantum well. Quantification of energy levels is limited by electron-hole conversion at the barrier interfaces and free-electron continuum. Electron-hole conversion at the barrier interfaces can be controlled by introducing an asymmetry between barriers and taking into account the effect of the interactions of the graphene sheet with the substrate. The interaction with the substrate induces an effective mass to carriers, allowing observation of Fabry-Pérot resonances under normal incidence and extinction of Klein tunneling. The asymmetry, between barriers creates a transmission gap between confined states and free-electron continuum, allowing the large graphene asymmetric quantum well to be exploited as a photo-detector operating at mid- and far-infrared frequency regimes.

Keywords:  graphene      quantum wells      reflection coefficient      photo-detector  
Received:  19 December 2015      Revised:  18 April 2016      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  81.07.St (Quantum wells)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Corresponding Authors:  E Ben Salem     E-mail:  bensalem_emna@yahoo.fr

Cite this article: 

E Ben Salem, R Chaabani, S Jaziri Mid/far-infrared photo-detectors based on graphene asymmetric quantum wells 2016 Chin. Phys. B 25 098101

[1] Geim A K and Novoselov K S 2007 Nat. Mater 6 183
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Li X S, Cai W, An J Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K Colombo L and Ruoff R S 2009 Science 324 1312
[4] Schwierz F 2010 Nat. Nanotechnol. 5 487
[5] Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phy. Rev. Lett. 98 206805
[6] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[7] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356
[8] Jiao L, Zhang L, Wang X, Diankov G and Dai H 2009 Nature 458 877
[9] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K James M and Tour J M 2009 Nature 458 872
[10] Ritter K A and Lyding J W 2009 Nat. Mater. 8 235
[11] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K and Fasel R 2010 Nature 466 470
[12] Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C and de Heer W A 2010 Nat. Nanotechnol. 5 727
[13] Trauzettel B, Bulaev D V, Loss D and Burkard G 2007 Nat. Phys. 3 192
[14] Mak K F, Ju L, Wang F and Heinz T F 2012 Solid State Commun. 152 1341
[15] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[16] Rogalski A 2003 Prog. Quant. Electron 27 59
[17] Clark J and Lanzani G 2010 Nat. Photon. 4 438
[18] Rodrigo D, Limaj O, Janner D, Etezadi D, Abajo F J G, Pruneri V and Altug H 2015 Science 34 165
[19] Liu C H, Chang Y C, Norris T B an Zhong Z 2014 Nat. Nanotechnol. 9 273
[20] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[21] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[22] J. Milton Pereira Jr J M, Mlinar V and Peeters F M 2006 Phys. Rev. B 74 045424
[23] Williams J R, Low T, Lundstrom M S and Marcus C M 2011 Nat. Nan-otechnol. 6 222
[24] Thornton T J, Pepper M, Ahmed H, Andrews D and Davies G J 1986 Phys. Rev. Lett. 56 1198
[25] Zheng H Z, Wei H P, Tsui D C and Weimann G 1986 Phys. Rev. B 34 5635
[26] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J and Brink J V D 2007 Phys. Rev. B 76 073103
[27] Suenaga K, Colliex C, Demoncy N, Loiseau A, Pascard H and Willaime F 1997 Science 278 653
[28] Skomski R, Dowben P A, Driver M S and Kelber J A 2014 Mater. Horiz. 1 563
[29] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448
[30] Hwang E H, Adam S and Sarma S D 2007 Phys. Rev. Lett. 98 186806
[31] Adam S, Hwang E H, Galitski V and Sarma S D 2007 Proc. Natl. Acad. Sci. USA 104 18392
[32] Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, von Klitzing K and Yacoby A 2008 Nat. Phys. 4 144
[33] Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, JarilloHerrero P and LeRoy B J 2011 Nat. Mater. 10 282
[34] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei L, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nan-otechnol. 5 722
[35] Mhamdi A, Ben Salem E and Jaziri S 2013 Solid State Commun. 175 106
[36] Wang J T, Guo D S, Zhao G L, Chen J C, Sun Z W and Ignatiev A 2013 WJCMP 3 67
[37] Slonczewski J C and Weiss P R 1958 Phys. Rev. 109 272
[38] Semenoff G W 1984 Phys. Rev. Lett. 53 2449
[39] Allain P E and Fuchs J N 2011 Eur. Phys. J. B 83 301
[40] Brey L and Fertig H A 2006 Phys. Rev. B 73 235411
[41] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[42] Novoselov K S, Geim A K, Morozov S V Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[43] Zhang Y, Tan Y W, Stormer H and Kim P 2005 Nature 438 201
[44] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!