Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 098102    DOI: 10.1088/1674-1056/25/9/098102
SPECIAL TOPIC—Physical research in liquid crystal Prev   Next  

Synthesis of ZnO quantum dots and their agglomeration mechanisms along with emission spectra based on ageing time and temperature

Bo Qiao(乔泊)1,2, Suling Zhao(赵谡玲)1,2, Zheng Xu(徐征)1,2, Xurong Xu(徐叙瑢)1,2
1. Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China;
2. Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract  The ZnO quantum dots (QDs) were synthesized with improved chemical solution method. The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm, which are homogeneously dispersed in ethanol. The optical absorption edge shifts from 370 nm of bulk material to 359 nm of QD materials due to the quantum size effect, while the photoluminescence peak shifts from 375 nm to 387 nm with the increase of the density of ZnO QDs. The stability of ZnO QDs was studied with different dispersion degrees at 0 ℃ and at room temperature of 25 ℃. The agglomeration mechanisms and their relationship with the emission spectra were uncovered for the first time. With the ageing of ZnO QDs, the agglomeration is aggravated and the surface defects increase, which leads to the defect emission.
Keywords:  ZnO quantum dots      quantum blue shift      agglomeration mechanism      stability  
Received:  20 May 2016      Accepted manuscript online: 
PACS:  81.07.Bc (Nanocrystalline materials)  
  78.55.Et (II-VI semiconductors)  
Fund: Project supported by the FRFCU (Grant No. 2016JBM066), 863 Program (Grant No. 2013AA032205), the National Natural Science Foundation of China (Grant Nos. 61575019, 51272022, and 11474018), and RFDP (Grant Nos. 20120009130005 and 20130009130001).
Corresponding Authors:  Bo Qiao     E-mail:  boqiao@bjtu.edu.cn

Cite this article: 

Bo Qiao(乔泊), Suling Zhao(赵谡玲), Zheng Xu(徐征), Xurong Xu(徐叙瑢) Synthesis of ZnO quantum dots and their agglomeration mechanisms along with emission spectra based on ageing time and temperature 2016 Chin. Phys. B 25 098102

[1] Qiu Y, Gogna P, Forouhar S, Stintz A and Lester L F 2011 Appl. Phys. Lett. 79 3570
[2] Geng W D, Guo J, Tang J and Liu H G 2014 Chin. J. Liquid Crystal. Display 29 4 (in Chinese)
[3] Chen S D, Chen Y Y and Lee S C 2005 Appl. Phys. Lett. 86 253104
[4] Schoelkopf R J, Wahlgren P, Kozhevnikov A A, Delsing P and Prober D E 1998 Science 280 1238
[5] Shrestha P K, Chun Y T and Chu D2015 Light-Science & Applications 4
[6] Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J and Peng X 2014 Nature 515 96
[7] Sun Q, Wang Y A, Li L S, Wang D, Zhu T, Xu J, Yang C and Li Y 2007 Nat. Photon. 1 717
[8] Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, Yassitepe E, Buin A, Hoogland S and Sargent E H 2015 Nature 523 324
[9] Wu K, Liang G, Shane Q, Ren Y, Kong D and Lian T 2015 JACS 137 12792
[10] Fonoberov V A and Balandina A A 2004 Appl. Phys. Lett. 85 24
[11] Tong X L, Xia X Z and Li Q X 2015 Chin. Phys. B 24 6
[12] Qiao B, Teyssedre G and Laurent C 2015 J. Phys. D: Appl. Phys. 48 405102
[13] Qiao B, Teyssedre G and Laurent C 2016 J. Appl. Phys. 119 024103
[14] Moeck P 2005 Nonlinear Analysis - Theory Methods and Applications 63 7
[15] Moeinian M and Akhbari K J 2015 Solid State Chem. 225 459
[16] Ai F, Tan J, Li F, Bao L M, Zhong A H and Chen S C 2010 Chin. J. Liquid Crystal. Displays 25 1 (in Chinese)
[17] Repp S and Erdem E 2016 Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy 152 637
[18] Ren M F, Wang H, Xu J W and Yang L 2009 Chin. J. Liquid Crystal. Displays 24 1 (in Chinese)
[19] Liu B, Zhao X R, Feng X X, Liu K and Zhao L 2009 Chin. J. Liquid Crystal. Displays 24 04 (in Chinese)
[20] Qiao Q, Li B H, Shan C X, Liu J S, Yu J, Xie X H, Zhang Z Z, Ji T B, Jia Y and Shen D Z 2012 Mater. Lett. 74 104
[21] Son D I, ParkD H, Choi W K, Cho S H, Kim W T and Kim T W 2009 Nanotechnology 20 19
[22] Qasim K, Chen J, Xu F, Wu J, Li Z, Lei W, Cui Y P and Xia J 2014 Sci Adv Mater. 6 2625
[23] Aleshin A N, Shcherbakov I P and Petrov V N 2015 Solid State Commun. 208 41
[24] Maikhuri D, Purohit S P and Mathur K C 2015 Superlatt. Microstruct. 85 206
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[11] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
No Suggested Reading articles found!