Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074101    DOI: 10.1088/1674-1056/25/7/074101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimization of loss and gain multilayers for reducing the scattering of a perfect conducting cylinder

Zhen-Zhong Yu(余振中), Guo-Shu Zhao(赵国树), Gang Sun(孙罡), Hai-Fei Si(司海飞), Zhong Yang(杨忠)
School of Intelligence Science and Control Engineering, Jinling Institute of Technology, Nanjing 211169, China
Abstract  Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses could degrade the cloaking effect. Using a genetic algorithm, we present the optimized design of loss and gain multilayers for reduction of the scattering from a perfect conducting cylinder. This multilayered structure is theoretically and numerically analyzed when the plasmonic material with low loss and high loss respectively is considered. We demonstrate by full-wave simulation that the optimized nonmagnetic gain-loss design can greatly compensate the decreased cloaking effect caused by loss material, which facilitates the realization of practical electromagnetic cloaking, especially in the optical range.
Keywords:  transformation optics      invisibility cloak      metamaterial  
Received:  30 September 2015      Revised:  01 February 2016      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Fx (Diffraction and scattering)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the Research Foundation of Jinling Institute of Technology, China (Grant No. JIT-B-201426), the Jiangsu Modern Education and Technology Key Project, China (Grant No. 2014-R-31984), the Jiangsu 333 Project Funded Research Project, China (Grant No. BRA2010004), and the University Science Research Project of Jiangsu Province, China (Grant No. 15KJB520010).
Corresponding Authors:  Zhen-Zhong Yu     E-mail:  nanfish@jit.edu.cn

Cite this article: 

Zhen-Zhong Yu(余振中), Guo-Shu Zhao(赵国树), Gang Sun(孙罡), Hai-Fei Si(司海飞), Zhong Yang(杨忠) Optimization of loss and gain multilayers for reducing the scattering of a perfect conducting cylinder 2016 Chin. Phys. B 25 074101

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Kwon D H and Werner D H 2008 New J. Phys. 10 115023
[3] Yu Z Z, Feng Y J, Wang Z B, Zhao J M and Jiang T 2013 Chin. Phys. B 22 034102
[4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[5] Cai W, Chettiar U K, Kildishev A V and Shalaev V M 2007 Nat. Photo. 1 224
[6] Alú A and Engheta N 2005 Phys. Rev. E 72 016623
[7] Alú A and Engheta N 2007 Opt. Express 15 3318
[8] Alú A and Engheta N 2008 Phys. Rev. Lett. 100 113901
[9] Popa B I and Cummer S A 2009 Phys. Rev. A 79 023806
[10] Xi S, Chen H S, Zhang B, Wu B I and Kong J A 2009 Phys. Rev. B 79 155122
[11] Yu Z Z, Feng Y J, Xu X F, Zhao J M and Jiang T 2011 J. Phys. D: Appl. Phys. 44 185102
[12] Wang X and Semouchkina E 2013 Appl. Phys. Lett. 102 113506
[13] Han T C, Qiu C W, Hao J M, Tang X H and Zouhdi S 2011 Opt. Express 19 8610
[14] Balanis C A 1989 Advanced Engineering Electromagnetics (New York: Wiley)
[15] Luo X Y, Liu D Y, Yao L F and Dong J F 2014 Acta Phys. Sin. 63 084101 (in Chinese)
[16] Rivas J G, Janke C, Bolivar P and Kurz H 2005 Opt. Express 13 847
[17] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[18] Garcia N, Ponizovskaya E V and Xiao J Q 2002 Appl. Phys. Lett. 80 1120
[19] Garcia N, Ponizowskaya E V, Zhu H, Xiao J Q and Pons A 2003 Appl. Phys. Lett. 82 3147
[20] Dai D X, Shi Y C, He S L, Wosinski L and Thylen L 2011 Opt. Express 19 12925
[21] Liu N, Wei H, Li J, Wang Z X, Tian X R, Pan A L and Xu H X 2013 Sci. Rep. 3 1967
[22] Kirstaedter N, Schmidt O G, Ledentsov N N, Bimberg D, Ustinov V M, Egorov A Y, Zhukov A E, Maximov M V, Kopev P S and Alferov Z I 1996 Appl. Phys. Lett. 69 1226
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[6] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[9] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[10] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[11] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[12] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[13] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[14] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[15] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
No Suggested Reading articles found!