|
|
Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement |
Runrun Hao(郝润润)1,2,†, Kun Zhang(张昆)1,2,†, Yinggang Li(李迎港)1,2, Qiang Cao(曹强)3, Xueying Zhang(张学莹)1,2,4,‡, Dapeng Zhu(朱大鹏)1,2,§, and Weisheng Zhao(赵巍胜)1,2 |
1 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China; 2 Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266000, China; 3 Spintronics Institute, University of Jinan, Jinan 250022, China; 4 Truth Instruments Co. Ltd., Qingdao 266000, Chin |
|
|
Abstract Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque (SOT) effect. However, the measurement of in-plane magnetization switching typically relies on the giant/tunneling magnetoresistance measurement in a spin valve structure calling for complicated fabrication process, or the non-electric approach of Kerr imaging technique. Here, we present a reliable and convenient method to electrically probe the SOT-induced in-plane magnetization switching in a simple Hall bar device through analyzing the MR signal modified by a magnetic field. In this case, the symmetry of MR is broken, resulting in a resistance difference for opposite magnetization orientations. Moreover, the feasibility of our method is widely evidenced in heavy metal/ferromagnet (Pt/Ni20Fe80 and W/Co20Fe60B20) and the topological insulator/ferromagnet (Bi2Se3/Ni20Fe80). Our work simplifies the characterization process of the in-plane magnetization switching, which can promote the development of SOT-based devices.
|
Received: 11 July 2021
Revised: 23 August 2021
Accepted manuscript online: 27 August 2021
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904017, 11974145, 51901008, and 12004024), Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020ZD28), platform from Qingdao Science and Technology Commission, and the Fundamental Research Funds for the Central Universities of China. |
Corresponding Authors:
Xueying Zhang, Dapeng Zhu
E-mail: xueying.zhang@buaa.edu.cn;zhudp@buaa.edu.cn
|
Cite this article:
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜) Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement 2022 Chin. Phys. B 31 017502
|
[1] Slaughter J M, Rizzo N D, Janesky J, Whig R, Mancoff F B, Houssameddine D, Sun J J, Aggarwal S, Nagel K, Deshpande S, Alam S M, Andre T and LoPresti P in 2012 IEEE Int. electron devices meeting 29.23.21 [2] Fukami S, Yamanouchi M, Ikeda S and Ohno H 2014 IEEE Transactions on Magnetics 50 1 [3] Lin X, Yang W, Wang K L and Zhao W 2019 Nat. Electron. 2 274 [4] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 4 [5] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602 [6] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189 [7] Pai C, Liu L, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Appl. Phys. Lett. 101 122404 [8] Wang M, Cai W, Zhu D, Wang Z, Kan J, Zhao Z, Cao K, Wang Z, Zhang Y, Zhang T, Park C, Wang J, Fert A and Zhao W 2018 Nat. Electron. 1 582 [9] Wang M, Cai W, Cao K, Zhou J, Wrona J, Peng S, Yang H, Wei J, Kang W, Zhang Y, Langer J, Ocker B, Fert A and Zhao W 2018 Nat. Commun. 9 671 [10] Peng S, Zhu D, Li W, Wu H, Grutter A J, Gilbert D A, Lu J, Xiong D, Cai W, Shafer P, Wang K L and Zhao W 2020 Nat. Electron. 3 757 [11] Liu N, Wang H and Zhu T 2012 Acta Phys. Sin. 61 167504 (in Chinese) [12] Avci C O, Garello K, Gabureac M, Ghosh A, Fuhrer A, Alvarado S F and Gambardella P 2014 Phys. Rev. B 90 224427 [13] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotech. 8 587 [14] HayashI M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425 [15] Liu L, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601 [16] Woo S, Mann M, Tan A J, Caretta L and Beach G S D 2014 Appl. Phys. Lett. 105 212404 [17] Yang H, Zhang B, Zhang X, Yan X, Cai W, Zhao Y, Sun J, Wang K L, Zhu D and Zhao W 2019 Phys. Rev. Appl. 12 034004 [18] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [19] Fukami S, Anekawa T, Zhang C and Ohno H 2016 Nat. Nanotechnol. 11 621 [20] Li Y, Kan H, Miao Y, Yang L, Qiu S, Zhang G, Ren J, Wang C and Hu G 2020 Chin. Phys. B 29 017303 [21] Shi S, Liang S, Zhu Z, Cai K, Pollard S D, Wang Y, Wang J, Wang Q, He P, Yu J, Eda G, Liang G and Yang H 2019 Nat. Nanotech. 14 945 [22] Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y and Yang H 2017 Nat. Commun. 8 1364 [23] Chen Y T, TakahashI S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E and Bauer G E W 2013 Phys. Rev. B 87 144411 [24] Liu Y, Chen T, Lo T, Tsai T, Yang S, Chang Y, Wei J and Pai C 2020 Phys. Rev. Appl. 13 044032 [25] Fan X, Wu J, Chen Y, Jerry M J, Zhang H and Xiao J Q 2013 Nat. Commun. 4 1799 [26] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871 [27] Ou Y, Pai C, Shi S, Ralph D C and Buhrman R A 2016 Phys. Rev. B 94 140414 [28] Jiang M, Asahara H, Sato S, Ohya S and Tanaka M 2020 Nat. Electron. 3 751 [29] Khvalkovskiy A V, Cros V, Apalkov D, Nikitin V, Krounbi M, Zvezdin K A, Anane A, Grollier J and Fert A 2013 Phys. Rev. B 87 020402 [30] Pai C, Ou Y, Vilela-Leão L H, Ralph D C and Buhrman R A 2015 Phys. Rev. B 92 064426 [31] Katine J A, Albert F J, Buhrman R A, Myers E B and Ralph D C 2000 Phys. Rev. Lett. 84 14 [32] Sun J Z 2000 Phys. Rev. B 62 570 [33] Koch R H, Katine J A and Sun J Z 2004 Phys. Rev. Lett. 92 088302 [34] Nan T, Emori S, Boone C T, Wang X, Oxholm T M, Jones J G, Howe B M, Brown G J and Sun N X 2015 Phys. Rev. B 91 214416 [35] Mazraati H, Zahedinejad M and Åkerman J 2018 Appl. Phys. Lett. 113 092401 [36] Cho S, Baek S C, Lee K D, Jo Y and Park B G 2015 Sci. Rep. 5 14668 [37] Mcguire T R and Potter R I 1975 IEEE T. Magn. 11 1018 [38] Teixeira J M, Silva R F A, Ventura J, Pereira A M, Carpinteiro F, Araújo J P, Sousa J B, Cardoso S, Ferreira R and Freitas P P 2006 Mater. Sci. Eng. B 126 180 [39] Zhu S, Shi G, Zhao P, Meng D, Liang G, Zhai X, Lu Y, Li Y, Chen L and Wu K 2018 Chin. Phys. B 27 076801 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|