CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Fabrications and characterizations of high performance 1.2 kV, 3.3 kV, and 5.0 kV class 4H-SiC power SBDs |
Qing-Wen Song(宋庆文)1,2, Xiao-Yan Tang(汤晓燕)2, Hao Yuan(袁昊)2, Yue-Hu Wang(王悦湖)2, Yi-Meng Zhang(张艺蒙)2, Hui Guo(郭辉)2, Ren-Xu Jia(贾仁需)2, Hong-Liang Lv(吕红亮)2, Yi-Men Zhang(张义门)2, Yu-Ming Zhang(张玉明)2 |
1 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China; 2 Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China |
|
|
Abstract In this paper, 1.2 kV, 3.3 kV, and 5.0 kV class 4H-SiC power Schottky barrier diodes(SBDs)are fabricated with three N-type drift layer thickness values of 10 μm, 30 μm, and 50 μm, respectively. The avalanche breakdown capabilities, static and transient characteristics of the fabricated devices are measured in detail and compared with the theoretical predictions. It is found that the experimental results match well with the theoretical calculation results and are very close to the 4H-SiC theoretical limit line. The best achieved breakdown voltages (BVs) of the diodes on the 10 μm, 30 μm, and 50 μm epilayers are 1400 V, 3320 V, and 5200 V, respectively. Differential specific-on resistances (Ron-sp) are 2.1 mΩ ·cm2, 7.34 mΩ·cm2, and 30.3 mΩ·cm2, respectively.
|
Received: 16 November 2015
Revised: 07 January 2016
Accepted manuscript online:
|
PACS:
|
71.20.Nr
|
(Semiconductor compounds)
|
|
73.40.Sx
|
(Metal-semiconductor-metal structures)
|
|
77.22.Jp
|
(Dielectric breakdown and space-charge effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61404098, 61176070, and 61274079), the Doctoral Fund of Ministry of Education of China (Grant Nos. 20110203110010 and 20130203120017), the National Key Basic Research Program of China (Grant No. 2015CB759600), and the Key Specific Projects of Ministry of Education of China (Grant No. 625010101). |
Corresponding Authors:
Qing-Wen Song
E-mail: qwsong@xidian.edu.cn
|
Cite this article:
Qing-Wen Song(宋庆文), Xiao-Yan Tang(汤晓燕), Hao Yuan(袁昊), Yue-Hu Wang(王悦湖), Yi-Meng Zhang(张艺蒙), Hui Guo(郭辉), Ren-Xu Jia(贾仁需), Hong-Liang Lv(吕红亮), Yi-Men Zhang(张义门), Yu-Ming Zhang(张玉明) Fabrications and characterizations of high performance 1.2 kV, 3.3 kV, and 5.0 kV class 4H-SiC power SBDs 2016 Chin. Phys. B 25 047102
|
[1] |
Kaji N, Niwa H, Suda J and Kimoto T 2015 IEEE Trans. Electron Dev. 62 373
|
[2] |
Sung W, Van Brunt E, Baliga B J and Huang A Q 2011 IEEE Electron Dev. Lett. 32 880
|
[3] |
Song Q W, Yuan H, Han C, Zhang Y M, Tang X Y, Zhang Y M, Guo H, Zhang Y M, Jia R X and Wang Y H 2015 Sci. China-Tech. Sci. 58 1369
|
[4] |
Song Q W, Zhang Y M, Zhang Y M and Tang X Y 2012 Diamond Relat. Mater. 22 42
|
[5] |
Wang Y, Yu C, Miao Z and Shan M G 2015 IET Power Electron. 8 672
|
[6] |
Yuan H, Tang X Y, Zhang Y M, Zhang Y M, Song Q W, Yang F and Wu H 2014 Chin. Phys. B 23 057102
|
[7] |
Zhao J H, Alexandrov P and Li X 2003 IEEE Electron Dev. Lett. 24 402
|
[8] |
Nakamura T, Miyanagi T, Kamata I, Jikimoto T and Tsuchida H 2005 IEEE Electron Dev. Lett. 26 99
|
[9] |
Wahab Q, Kimoto T, Ellison A, Hallin C, Tuominen M, Yakimova R, Henry A, Bergman J P and Janzen E 1998 Appl. Phys. Lett. 72 26
|
[10] |
Morisette D T, Cooper J A, Melloch M R, Dolny G M, Shenoy P M, Zafrani M and Gladish J 2001 IEEE Trans. Electron Dev. 48 349
|
[11] |
Huang R H, Chen G, Bai S, Li R, Li Y and Tao Y H 2014 Mater. Sci. Forum. 778-780 800
|
[12] |
Vassilevski K, Nikitina I, Horsfall A, Wright N G, O'Neill A G, Hilton K P, Munday A G, Hydes A J, Uren M J and Johnson C M 2007 Mater. Sci. Forum. 556-557 873
|
[13] |
Song Q W, Zhang Y M, Zhang Y M, Zhang Q and Lu H L 2010 Chin. Phys. B 19 087202
|
[14] |
Song Q W, Zhang Y M, Han J S, Tanner P, Dimitrijev S, Zhang Y M, Zhang Y M, Tang X Y and Guo H 2013 Chin. Phys. B 22 027302
|
[15] |
Trentin A, Zanchetta P, Wheeler P and Clare J 2012 IET Power Electron. 5 1873
|
[16] |
Ying W, Likun X and Kun D 2014 IET Power Electron. 7 325
|
[17] |
Zhao J H, Li X, Tone K, Alexandrov P, Pan M and Weiner M 2003 Solid-State Electron. 47 377
|
[18] |
Kimoto T 2015 Jpn. J. Appl. Phys. 54 040103
|
[19] |
Kimoto T, Urushidani T, Kobayashi S and Matsunami Hiroyuki 1993 IEEE Electron Dev. Lett. 14 548
|
[20] |
Wadaa K, Uchida K, Kimura R, Sakai M, Hatsukawa S, Hiratsuka K, Hirakata N and Mikamura Y 2014 Mater. Sci. Forum. 778-780 915
|
[21] |
Bartolf H, Sundaramoorthy V, Mihaila A, Berthou M, Godignon P and Millán J 2014 Mater. Sci. Forum. 778 795
|
[22] |
Song Q W, Zhang Y M, Zhang Y M, Chen F P and Tang X Y 2011 Chin. Phys. B 20 057301
|
[23] |
Baliga B J 2009 Advanced power rectifier concepts (New York: Springer Science+Business Media, LLC) pp. 45-48
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|