Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 044211    DOI: 10.1088/1674-1056/25/4/044211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Planar waveguides in neodymium-doped calcium niobium gallium garnet crystals produced by proton implantation

Chun-Xiao Liu(刘春晓)1, Meng Chen(陈梦)1, Li-Li Fu(付丽丽)2, Rui-Lin Zheng(郑锐林)1, Hai-Tao Guo(郭海涛)3, Zhi-Guang Zhou(周志广)3, Wei-Nan Li(李玮楠)3, She-Bao Lin(林社宝)4, Wei Wei(韦玮)1
1 School of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
4 Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721007, China
Abstract  In this work, the fabrication and optical properties of a planar waveguide in a neodymium-doped calcium niobium gallium garnet (Nd:CNGG) crystal are reported. The waveguide is produced by proton (H+) implantation at 480 keV and a fluence of 1.0×1017 ions/cm2. The prism-coupling measurement is performed to obtain the dark mode of the waveguide at a wavelength of 632.8 nm. The reflectivity calculation method (RCM) is used to reconstruct the refractive index profile. The finite-difference beam propagation method (FD-BPM) is employed to calculate the guided mode profile of the waveguide. The stopping and range of ions in matter 2010 (SRIM 2010) code is used to simulate the damage profile induced by the ion implantation. The experimental and theoretical results indicate that the waveguide can confine the light propagation.
Keywords:  waveguide      ion implantation      Nd:CNGG crystal  
Received:  13 September 2015      Revised:  26 October 2015      Accepted manuscript online: 
PACS:  42.79.Gn (Optical waveguides and couplers)  
  61.80.Jh (Ion radiation effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 61405240, 61077070, 61177086, 51002181, and 61177084), the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY214159), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0401).
Corresponding Authors:  Chun-Xiao Liu, Wei Wei     E-mail:  cxliu0816@sina.com;weiwei@njupt.edu.cn

Cite this article: 

Chun-Xiao Liu(刘春晓), Meng Chen(陈梦), Li-Li Fu(付丽丽), Rui-Lin Zheng(郑锐林), Hai-Tao Guo(郭海涛), Zhi-Guang Zhou(周志广), Wei-Nan Li(李玮楠), She-Bao Lin(林社宝), Wei Wei(韦玮) Planar waveguides in neodymium-doped calcium niobium gallium garnet crystals produced by proton implantation 2016 Chin. Phys. B 25 044211

[1] Xie G Q, Tang D Y, Luo H, Zhang H J, Yu H H, Wang J Y, Tao X T, Jiang M H and Qian L J 2008 Opt. Lett. 33 1872
[2] Yu H H, Zhang H J, Wang Z P, Wang J Y, Yu Y G, Shi Z B, Zhang X Y and Jiang M H 2009 Opt. Lett. 34 151
[3] Mukhopadhyay P K, Ranganathan K, George J, Sharma S K and Nathan T P S 2003 Opt. Laser Technol. 35 173
[4] Chen F, Wang X L and Wang K M 2007 Opt. Mater. 29 1523
[5] Hu H, Ricken R and Sohler W 2010 Appl. Phys. B 98 677
[6] Chen F and Vázquez de Aldana J R 2014 Laser Photon. Rev. 8 251
[7] Il'ichev I V, Kozlov A S, Gaenko P V and Shamrai A V 2009 Quantum Electron. 39 98
[8] Gorin A, Copperwhite R, Boothman C, O'Sullivan M, McDonagh C and Oubaha M 2011 Opt. Commun. 284 2164
[9] Chen F 2012 Laser Photon. Rev. 6 622
[10] Liu C X, Li W N, Wei W and Peng B 2012 Chin. Phys. B 21 074211
[11] Wang L L and Yu Y G 2010 Appl. Surf. Sci. 256 2616
[12] Jiang Z H, Yang J H and Dai S X 2004 J. Opt. Soc. Am. B 21 739
[13] Liu C X, Xu J, Zhou Z G, Fu L L, Zheng R L, Li W N, Guo H T, Lin S B and Wei W 2015 Mod. Phys. Lett. B 29 1550021
[14] Liu C X, Liu T, Liu X H, Wei W and Peng B 2011 Chin. Phys. Lett. 28 114205
[15] Chandler P J and Lama F L 1986 Opt. Acta 33 127
[16] Ziegler J F 2011 SRIM, http://www.srim.org
[17] Liu T, Huang Q, Zhao J H, Kong W J, Liu P, Zhang L, Zhou Y F, Yu X F, Wang L and Wang X L 2015 Chin. Phys. B 24 056102
[18] Huang Q, Liu P, Liu T, Guo S S and Wang X L 2012 Chin. Phys. B 21 056103
[19] Qin X F, Chen M, Wang X L, Liang Y and Zhang S M 2010 Chin. Phys. B 19 113403
[20] Rsoft Design Group, Computer software BeamPROP, version 8.0, http://www. rsoftdesign. com
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[7] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[8] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[9] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[10] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[11] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[12] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[13] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
No Suggested Reading articles found!