ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Sound-transparent anisotropic media for backscattering-immune wave manipulation |
Wei-Wei Kan(阚威威)†, Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾) |
School of Science, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract The scattering behavior of an anisotropic acoustic medium is analyzed to reveal the possibility of routing acoustic signals through the anisotropic layers with no backscattering loss. The sound-transparent effect of such a medium is achieved by independently modulating the anisotropic effective acoustic parameters in a specific order, and is experimentally observed in a bending waveguide by arranging the subwavelength structures in the bending part according to transformation acoustics. With the properly designed filling structures, the original distorted acoustic field in the bending waveguide is restored as if the wave travels along a straight path. The transmitted acoustic signal is maintained nearly the same as the incident modulated Gaussian pulse. The proposed schemes and the supporting results could be instructive for further acoustic manipulations such as wave steering, cloaking and beam splitting.
|
Received: 04 November 2021
Revised: 26 December 2021
Accepted manuscript online: 07 January 2022
|
PACS:
|
43.20.-f
|
(General linear acoustics)
|
|
43.20.+g
|
(General linear acoustics)
|
|
43.35.+d
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974186, 11604153, and 61975080), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160818 and BK20200070), and the Open Research Foundation of Key Laboratory of Modern Acoustics, Ministry of Education. |
Corresponding Authors:
Wei-Wei Kan
E-mail: kan@njust.edu.cn
|
Cite this article:
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾) Sound-transparent anisotropic media for backscattering-immune wave manipulation 2022 Chin. Phys. B 31 084302
|
[1] Xu Y C, Wu J H, Cai Y Q and Ma F Y 2019 J. Phys. D Appl. Phys. 52 405301 [2] Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nat. Mater. 5 452 [3] Zhao W, Chu H C, Tao Z and Hang Z H 2019 Appl. Phys. Exp. 12 054004 [4] Bai L, Song G Y, Jiang W X, Cheng Q and Cui T J 2019 Appl. Phys. Lett. 115 231902 [5] Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H and Zhu X F 2016 Nat. Commun. 7 13368 [6] Jiang X, Li Y, Liang B, Cheng J C and Zhang L 2016 Phys. Rev. Lett. 117 034301 [7] Tang S, Ren B, Feng Y, Song J and Jiang Y 2021 Appl. Phys. Lett. 119 071907 [8] Tang S, Ren B, Feng Y, Song J and Jiang Y 2021 Appl. Phys. Exp. 14 085504 [9] Li Y and Assouar B M 2016 Appl. Phys. Lett. 108 063502 [10] Xie Y, Wang W, Chen H, Konneker A, Popa B I and Cummer S A 2014 Nat. Commun. 5 5553 [11] Fink M 2014 Nat. Mater. 13 848 [12] García-Chocano V M, Graciá-Salgado R, Torrent D, Cervera F and Sáchez-Dehesa J 2012 Phys. Rev. B 85 184102 [13] Shen C, Xu J, Fang N X and Jing Y 2014 Phys. Rev. X 4 041033 [14] Torrent D and Sánchez-Dehesa J 2008 New J. Phys. 10 023004 [15] Christensen J and Garcia De Abajo F J 2012 Phys. Rev. Lett. 108 124301 [16] Norris A N and Nagy A J 2010 J. Acoust Soc. Am. 128 1606 [17] Popa B I and Cummer S A 2009 Phys. Rev. B 80 174303 [18] Torrent D and Sanchez-Dehesa J 2010 Phys. Rev. Lett. 105 174301 [19] Sun Z Y, Sun X C, Jia H, Bi Y F and Yang J 2019 Appl. Phys. Lett. 114 094101 [20] Popa B I, Wang W, Konneker A, Cummer S A, Rohde C A, Martin T P, Orris G J and Guild M D 2016 J. Acoust. Soc. Am. 139 3325 [21] Norris A N 2009 J. Acoust Soc. Am. 125 839 [22] Pendry J B and Li J 2008 New J. Phys. 10 115032 [23] Wang Y Y, Ding E L, Liu X Z and Gong X F 2016 Chin. Phys. B. 25 124305 [24] Kan W, Liang B, Tian C, Shen Z and Cheng J 2017 Appl. Phys. Lett. 110 253502 [25] Rahm M, Cummer S A, Schurig D, Pendry J B and Smith D R 2008 Phys. Rev. Lett. 100 063903 [26] Dong E Q, Zhou Y Y, Zhang Y and Chen H Y 2020 Phys. Rev. Appl. 13 024002 [27] Cummer S A, Rahm M and Schurig D 2008 New J. Phys. 10 115025 [28] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780 [29] Ji W Q, Wei Q, Zhu X F and Wu D J 2019 J. Phys. D:Appl. Phys. 52 325302 [30] Zhu J, Chen T N, Liang Q X, Wang X P, Xiong J and Jiang P 2015 J. Phys. D:Appl. Phys. 48 305502 [31] Popa B I, Zigoneanu L and Cummer S A 2011 Phys. Rev. Lett. 106 253901 [32] Zigoneanu L, Popa B I and Cummer S A 2014 Nat. Mater. 13 352 [33] Jin Y B, Fang X S, Li Y and Torrent D 2019 Phys. Rev. Appl. 11 011004 [34] Kan W, García-Chocano V M, Cervera F, Liang B, Zou X Y, Yin L L, Cheng J and Sánchez-Dehesa J 2015 Phys. Rev. Appl. 3 064019 [35] Bi Y F, Jia H, Sun Z Y, Yang Y Z, Zhao H and Yang J 2018 Appl. Phys. Lett. 112 223502 [36] Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B and Laude V 2004 Appl. Phys. Lett. 84 4400 [37] Wu L Y, Chiang T Y, Tsai C N, Wu M L and Chen L W 2012 Appl. Phys. A. 109 523 [38] Kan W and Shen Z 2017 Appl. Phys. Lett. 111 223501 [39] Fokin V, Ambati M, Sun C and Zhang X 2007 Phys. Rev. B 76 144302 [40] Garciía-Chocano V M, Torrent D and Sánchez-Dehesa J 2012 Appl. Phys. Lett. 101 084103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|