Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054102    DOI: 10.1088/1674-1056/ac373b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications

Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平)
Air and Missile Defend College, Air Force Engineering University of China, Xi'an 710051, China
Abstract  A miniaturized multi-frequency circularly polarized array is designed in this paper. The antenna array is composed of three independent sub-arrays employing modified quarter-mode substrate ntegrated aveguide (QMSIW) to achieve three circularly polarized frequency bands. By introducing strip-slot, the impedance bandwidth of the antenna array is broadened while the dimension is decreased by 75% to realize miniaturization. Meanwhile, metasurface causes the impedance bandwidth of the sub-array to be further enhanced. Moreover, the metal vias are employed in the antenna array design to further achieve miniaturization. The antenna array is manufactured and measured to verify the design. Both the measured and simulated results display that the array achieves the impedance bandwidths of 10%, 11.7%, and 14.8% and axial ratio bandwidths of 8.8%, 8.0%, and 8.5% at 2.5, 3.5, and 4.8 GHz, respectively. The gain is stable in the operating band within an uncertainty of 0.7 dBi. The whole dimension is 0.92λ×0.63λ×0.04λ, where λ0 is the wavelength at the lowest resonant frequency. Furthermore, the simple structure and miniaturization provides great convenience in sub-6 applications.
Keywords:  substrate integrated waveguide      circularly polarized      quarter-mode      antenna  
Received:  28 August 2021      Revised:  04 November 2021      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61871394).
Corresponding Authors:  Guang-Ming Wang,E-mail:gming01@sina.com     E-mail:  gming01@sina.com
About author:  2021-11-6

Cite this article: 

Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平) A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications 2022 Chin. Phys. B 31 054102

[1] Li T and Chen Z N 2020 IEEE Trans. Anten. Propag. 68 1128
[2] Wang L J, Chen Q H, Yu F L and Gao X 2018 Chin. Phys. B 27 087802
[3] Liu Y, Wang S H, Li N, Wang J B and Zhao J P 2018 IEEE Antennas Wireless Propag. Lett. 17 1764
[4] Zhao C J and Yang S 2019 IEEE Trans. Anten. Propag. 67 7234
[5] Moharamzadeh E and Javan M A 2013 IEEE Anten. Wirel. Propag. Lett. 12 1145
[6] Yu Y Q, Fan Y W and Wang X Y 2020 Chin. Phys. B 29 118402
[7] Wang X Y, Wang Y, Wang S W, Zhang Y Q and Wu X J 2018 Chin. Phys. B 27 110502
[8] Jia Y T, Liu Y, Gong S X, Zhang W B and Liao G S 2017 IEEE Anten. Wirel. Propag. Lett. 16 2477
[9] Bai X D, Tang J J, Liang X L, Geng J P and Jin R R 2014 IEEE Anten. Wirel. Propag. Lett. 13 380
[10] Hoang T V, Le T T, Li Q Y and Park H C 2015 IEEE Anten. Wirel. Propag. Lett. 15 1032
[11] Li S J, Cao X Y, Gao J, Zheng Q R, Yang Q, Zhang Z and Zhang H M 2013 Acta Phys. Sin. 62 244101 (in Chinese)
[12] Li T and Chen Z N 2018 IEEE Trans. Anten. Propag. 66 5620
[13] Zuo Y, Shen Z X and Feng Y J 2014 Chin. Phys. B 23 034101
[14] Moscato S, Tomassoni C, Bozzi M and Perregrini L 2016 IEEE Trans. Micro. Theo. Tech. 64 2538
[15] Deckmyn T, et al. 2017 IEEE Trans. Anten. Propag. 65 6915
[16] Wu T, Chen J and Wu P F 2020 IEEE Access 8 147070
[17] Li H P, Wang G M, Xu H X, Cai T and Liang J G 2015 IEEE Trans. Anten. Propag. 63 5144
[18] Cui T J, Wu H T and Liu S 2020 Acta Phys. Sin. 69 158101 (in Chinese)
[19] Li X N, Zhou L and Zhao G Z 2019 Acta Phys. Sin. 68 238101 (in Chinese)
[20] Liu K Y, Wang G M, Cai T, Li H P and Li T Y 2021 IEEE Trans. Anten. Propag. 69 3349
[21] Li T and Chen Z N 2018 IEEE Trans. Anten. Propag. 66 6742
[22] Wu G C, Wang G M, Fu X L, Liang J G and Bai W X 2017 Chin. Phys. B 26 024102
[23] Kumar A and Raghavan S 2018 IEEE Anten. Wirel. Propag. Lett. 17 772
[24] Kumar K, Priya S, Dwari S and Mandal M K 2020 IEEE Trans. Anten. Propag. 68 6419
[25] Yang W C, Chen S, Che W Q, Xue Q and Meng Q 2018 IEEE Trans. Anten. Propag. 66 4918
[26] Li C F, Zhu X W, Liu P F, Yu C and Hong W 2019 IEEE Anten. Wirel. Propag. Lett. 18 1208
[27] Priya S, Dwari S, Kumar K and Mandal M K 2019 IEEE Trans. Anten. Propag. 67 6656
[28] Jin C, Li R, Alphones A and Bao X 2013 IEEE Trans. Anten. Propag. 61 2921
[29] Yuan L, Sun K, Liu S, Chen B and Yang D 2021 IEEE Access 9 48963
[1] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[2] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[3] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[4] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[5] A low-cost invasive microwave ablation antenna with a directional heating pattern
Zhang Wen(文章), Xian-Qi Lin(林先其), Chen-Nan Li(李晨楠), and Yu-Lu Fan(樊钰璐). Chin. Phys. B, 2022, 31(3): 038401.
[6] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[7] Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳). Chin. Phys. B, 2022, 31(10): 104101.
[8] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[9] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[10] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[11] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[12] Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna
Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高军), Huan-Huan Yang(杨欢欢), and Jiang-Feng Han(韩江枫). Chin. Phys. B, 2021, 30(6): 064101.
[13] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[14] Effects of initial electronic state on vortex patterns in counter-rotating circularly polarized attosecond pulses
Qi Zhen(甄琪), Jia-He Chen(陈佳贺), Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2021, 30(2): 024203.
[15] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
No Suggested Reading articles found!