Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 044205    DOI: 10.1088/1674-1056/ac29b4
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation

Zhong-Yang Li(李忠洋)1,†, Jia Zhao(赵佳)1, Sheng Yuan(袁胜)1, Bin-Zhe Jiao(焦彬哲)1, Pi-Bin Bing(邴丕彬)1, Hong-Tao Zhang(张红涛)1, Zhi-Liang Chen(陈治良)1, Lian Tan(谭联)1, and Jian-Quan Yao(姚建铨)2
1 College of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
2 College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072, China
Abstract  A new scheme which generates multi-frequency terahertz (THz) waves from planar waveguide by the optimized cascaded difference frequency generation (OCDFG) is proposed. A THz wave with frequency ωT1 is generated by the OCDFG with two infrared pump waves, and simultaneously a series of cascaded optical waves with a frequency interval ωT1 is generated. The THz wave with a frequency of M-times ωT1 is generated by mixing the m-th-order and the (m+M)-th-order cascaded optical wave. The phase mismatch distributions of cascaded difference frequency generation (CDFG) are modulated by changing the thickness of planar waveguide step by step, thereby satisfying the phase-matching condition from first-order to high-order cascaded Stokes process step by step. As a result, the intensity of THz wave can be enhanced and modulated by controlling the cascading order of OCDFG.
Keywords:  multi-frequency terahertz wave      optimized cascaded difference frequency generation      planar waveguide  
Received:  15 July 2021      Revised:  13 September 2021      Accepted manuscript online:  24 September 2021
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.65.Dr (Stimulated Raman scattering; CARS)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61735010, 31671580, and 61601183), the Natural Science Foundation of Henan Province, China (Grant No. 162300410190), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT023).
Corresponding Authors:  Zhong-Yang Li     E-mail:  thzwave@163.com

Cite this article: 

Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨) Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation 2022 Chin. Phys. B 31 044205

[1] Baker C, Lo T, Tribe W R, Cole B E, Hogbin M R and Kemp M C 2007 Proc. IEEE Inst. Electr. Electron Eng. 95 1559
[2] Liang M Y, Zhang C L, Zhao R and Zhao Y J 2014 J. Infrared, Millimeter, Terahertz Waves 35 780
[3] Jepsen P U, Cooke D G and Koch M 2011 Laser Photon. Rev. 5 124
[4] Dong J, Jackson J B, Melis M, Giovanacci D, Walker G C, Locquet A, Bowen J W and Citrin D S 2016 Opt. Express 24 26972
[5] Liu P, Xu D, Yu H, Zhang H, Li Z, Zhong K, Wang Y and Yao J Q 2013 J. Light. Technol. 31 2508
[6] Ravi K, Schimpf D N and Kärtner F X 2016 Opt. Express 24 25582
[7] Saito K, Tanabe T and Oyama Y 2015 J. Opt. Soc. Am. B 32 617
[8] Kiessling J, Sowade R, Breunig I, Buse K and Dierolf V 2009 Opt. Express 17 87
[9] Li Z Y, Sun X Q, Li Y J, Yuan B, Zhang H T, Bing P B, Wang Z and Yao J Q 2020 Opt. Lasers Eng. 128 106035
[10] Hu C F, Zhong K, Mei J L, Wang M R, Guo S B, Xu W Z, Liu P X, Xu D G, Wang Y Y and Yao J Q 2015 Mod. Phys. Lett. B 29 1
[11] Ravi K and Kärtner F X 2020 Laser Photon. Rev. 14 6
[12] Saito K, Tanabe T and Oyama Y 2012 Opt. Express 20 26082
[13] Pálfalvi L, Hebling J, Kuhl J, Péterá and Polgár K 2005 J. Appl. Phys. 97 123505
[14] Carbajo S, Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA 9402 (personal communication, 2015)
[15] Jundt D H 1997 Opt. Lett. 22 1553
[16] Wang L, Fallahi A, Ravi K and Kärtner F 2018 Opt. Express 26 29744
[17] Tan Y, Wu H, Wang S, Li C and Dai D 2018 Opt. Lett. 43 1962
[18] Zheng S, Huang M, Cao X, Wang L, Ruan Z, Shen L and Wang J 2019 Photon. Res. 7 1030
[19] Dai D 2017 J. Light. Technol. 35 572
[1] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[2] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[3] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[4] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[5] Giant Goos-Hänchen shifts of waveguide coupled long-range surface plasmon resonance mode
Qi You(游琪), Jia-Qi Zhu(祝家齐), Jun Guo(郭珺), Lei-Ming Wu(吴雷明), Xiao-Yu Dai(戴小玉), Yuan-Jiang Xiang(项元江). Chin. Phys. B, 2018, 27(8): 087302.
[6] Factorization method for inverse obstacle scattering problem in three-dimensional planar acoustic waveguides
Xue Qin(秦雪). Chin. Phys. B, 2018, 27(10): 100203.
[7] Fabrication of Al air-bridge on coplanar waveguide
Zhen-Chuan Jin(金震川), Hai-Teng Wu(吴海腾), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(10): 100310.
[8] High quality factor superconducting coplanar waveguide fabricated with TiN
Qiang Liu(刘强), Guang-Ming Xue(薛光明), Xin-Sheng Tan(谭新生), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(5): 058402.
[9] Superconducting tunable filter with constant bandwidth using coplanar waveguide resonators
Ying Jiang(蒋莹), Bo Li(李博), Bin Wei(魏斌), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松), Li-Nan Jiang(姜立楠). Chin. Phys. B, 2017, 26(10): 108501.
[10] Tunable coplanar waveguide resonator with nanowires
Zhou Yu (周渝), Jia Tao (郏涛), Zhai Ji-Quan (翟计全), Wang Cheng (汪橙), Zhong Xian-Qian (钟先茜), Cao Zhi-Min (曹志敏), Sun Guo-Zhu (孙国柱), Kang Lin (康琳), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2015, 24(4): 047403.
[11] The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity
Liu Bing-Can(刘炳灿), Yu Li(于丽), and Lu Zhi-Xin(逯志欣). Chin. Phys. B, 2011, 20(3): 037302.
[12] An analytical model for coplanar waveguide on silicon-on-insulator substrate with conformal mapping technique
He Da-Wei(何大伟), Cheng Xin-Hong(程新红), Wang Zhong-Jian(王中健), Xu Da-Wei(徐大伟), Song Zhao-Rui(宋朝瑞), and Yu Yue-Hui(俞跃辉). Chin. Phys. B, 2011, 20(1): 010210.
[13] Study of refractive index and thickness of TiO2/ormosil planar waveguide
Wang Bao-Ling (王宝玲), Hu Li-Li (胡丽丽). Chin. Phys. B, 2004, 13(11): 1887-1891.
No Suggested Reading articles found!