Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 038402    DOI: 10.1088/1674-1056/25/3/038402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers

Taohong Wang(王桃红)1, Changbo Chen(陈长博)1, Kunping Guo(郭坤平)2, Guo Chen(陈果)2, Tao Xu(徐韬)2,3, Bin Wei(魏斌)2
1. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China;
2. Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, China;
3. Sino-European School of Technology, Shanghai University, Shanghai 200444, China
Abstract  The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL.
Keywords:  polymer solar cell      interface      cathode buffer layer      morphology  
Received:  26 October 2015      Revised:  05 November 2015      Accepted manuscript online: 
PACS:  84.60.Jt (Photoelectric conversion)  
  73.50.-h (Electronic transport phenomena in thin films)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  64.75.St (Phase separation and segregation in thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61204014), the “Chenguang” Project (13CG42) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation, China, and the Shanghai University Young Teacher Training Program of Shanghai Municipality, China.
Corresponding Authors:  Guo Chen, Tao Xu     E-mail:  chenguo@shu.edu.cn;xtld@shu.edu.cn

Cite this article: 

Taohong Wang(王桃红), Changbo Chen(陈长博), Kunping Guo(郭坤平), Guo Chen(陈果), Tao Xu(徐韬), Bin Wei(魏斌) Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers 2016 Chin. Phys. B 25 038402

[1] Chen W B, Xu Z X, Li K, Chui S S Y, Roy V A L, Lai P T and Che C M 2012 Chin. Phys. B 21 078401
[2] Fan X, Zhao S L, Chen Y, Zhang J, Yang Q Q, Gong W, Xu Z and Xu X R 2015 Chin. Phys. Lett. 32 058401
[3] Li Y F 2012 Acc. Chem. Res. 45 723
[4] Zhang Z G, Qi B, Jin Z, Chi D, Qi Z, Li Y F and Wang J 2014 Energy Environ. Sci. 7 1966
[5] Zhang Z G, Li H, Qi B, Chi D, Jin Z, Qi Z, Hou J, Li Y F and Wang J 2013 J. Mater. Chem. A 1 9624
[6] Chen G, Sasabe H, Igrashi T, Hong Z and Kido J 2015 J. Mater. Chem. A 3 14517
[7] Liu Y X, Lu L F, Ning Y, Lu Y Z, Lu Q P, Zhang C M, Fang Y, Tang A W, Hu Y F, Lou Z D, Teng F and Hou Y B 2014 Chin. Phys. B 23 118802
[8] Roncali J, Leriche P and Blanchard P 2014 Adv. Mater. 26 3821
[9] Chen G, Sasabe H, Sasaki Y, Katagiri H, Wang X F, Sano T, Hong Z, Yang Y and Kido J 2014 Chem. Mater. 26 1356
[10] Kyaw A K K, Wang D H, Gupta V, Leong W L, Ke L, Bazan G C and Heeger A J 2013 ACS Nano 7 4569
[11] Chen Y, Zhang S, Wu Y and Hou J 2014 Adv. Mater. 26 2744
[12] Li G, Zhu R and Yang Y 2012 Nat. Photon. 6 153
[13] Lou S J, Szarko J M, Xu T, Yu L, Marks T J and Chen L X 2011 J. Am. Chem. Soc. 133 20661
[14] Walker B, Kim C and Nguyen T Q 2011 Chem. Mater. 23 470
[15] Chen G, Sasabe H, Wang Z, Wang X F, Hong Z, Yang Y and Kido J 2012 Adv. Mater. 24 2768
[16] You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G and Yang Y 2013 Nat. Commun. 4 1446
[17] Chen J, Cui, Li Y Q, Zhou L, Ou Q D, Li C, Li Y F and Tang J X 2015 Adv. Mater. 27 1035
[18] Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell T P and Chen Y 2015 J. Am. Chem. Soc. 137 3886
[19] Tan Z, Li S, Wang F, Qian D, Lin J, Hou J and Li Y 2014 Sci. Rep. 4 4691
[20] Li F, Zhao J, Yao K and Chen Y 2012 Chem. Phys. Lett. 553 36
[21] Steim R, Kogler F R and Brabec C J 2010 J. Mater. Chem. 20 2499
[22] Jönsson S K, Salaneck W R and Fahlman M 2005 J. Appl. Phys. 98 014901
[23] Park S, Tark S J, Lee J S, Lim H and Kim D 2009 Sol. Energy Mater. Sol. Cells 93 1020
[24] Chen G, Sasabe H, Wang Z, Wang X, Hong Z, Kido J and Yang Y 2012 Phys. Chem. Chem. Phys. 14 14661
[25] Chen G, Yokoyama D, Sasabe H, Hong Z, Yang Y and Kido J 2012 Appl. Phys. Lett. 101 083904
[26] Chen G, Sasabe H, Lu W, Wang X F, Kido J, Hong Z and Yang Y 2013 J. Mater. Chem. C 1 6547
[27] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
[28] Chen G, Sasabe H, Wang X F, Hong Z and Kido J 2014 Synth. Met. 192 10
[29] Matsumura M, Furukawa K and Jinde Y 1998 Thin Solid Films 331 96
[30] Gennip van W J H, Duren van J K J, Thüne P C, Janssen R A J and Niemantsverdriet J W 2002 J. Chem. Phys. 117 5031
[31] Brabec C J, Shaheen S E, Winder C, Sariciftci N S and Denk P 2002 Appl. Phys. Lett. 80 1288
[32] Chen S Y, Chu T Y, Chen J F, Su C Y and Chen C H 2006 Appl. Phys. Lett. 89 053518
[33] Shen L Y, Wu X M, Hua Y L, Dong M S, Yin S G and Zheng J J 2012 Acta Phys. Chim. Sin. 28 1497
[34] Chen L M, Xu Z, Hong Z and Yang Y 2010 J. Mater. Chem. 20 2575
[35] Du P, Zhang X Q, Sun X B, Yao Z G and Wang Y S 2006 Chin. Phys. 15 1370
[36] Xu T, Lambert Y, Krzeminski C, Grandidier B, Stiévenard D, Léêque G, Akjouj A, Pennec Y and Djafari-Rouhani B 2012 J. Appl. Phys. 112 033506
[37] Murthy D, Xu T, Chen W H, Houtepen A J, Savenije T J, Siebbeles L D A, Nys J P, Krzeminski C, Grandidier B, Stiévenard D, Pareige P, Jomard F, Patriarche G and Lebedev O I 2011 Nanotechnology 22 315710
[38] Peumans P and Forrest S R 2001 Appl. Phys. Lett. 79 126
[39] Hung W Y, Ke T H, Lin Y T, Wu C C, Huang T H, Chao T C, Wong K T and Wu C I 2006 Appl. Phys. Lett. 88 064102
[40] Liu Z Y, Tseng S R, Chao Y C, Chen C Y, Meng H F, Horng S F, Wu Y H and Chen S H 2011 Synth. Met. 161 426
[41] Kim Y H, Lee S Y, Kim N H, Moon C B, Jhun C G and Kim W Y 2012 Photovoltaic Specialists Conference (PVSC) 38th IEEE 002753
[42] Werner A, Li F, Harada K, Pfeiffer M, Fritz T, Leo K and Machill S 2004 Adv. Funct. Mater. 14 255
[43] He G, Pfeiffer M, Leo K, Hofmann M, Birnstock J, Pudzich R and Salbeck J 2004 Appl. Phys. Lett. 85 3911
[44] Walzer K, Maennig B, Pfeiffer M and Leo K 2007 Chem. Rev. 107 1233
[45] Chan M Y, Lai S L, Lau K M, Lee C S and Lee S T 2006 Appl. Phys. Lett. 89 163515
[1] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[6] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[7] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
No Suggested Reading articles found!