Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127501    DOI: 10.1088/1674-1056/26/12/127501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Random crystal field effect on hysteresis loops and compensation behavior of mixed spin-(1,3/2) Ising system

K Htoutou1,2,3, Y Benhouria3, A Oubelkacem3, R Ahl laamara1,2,4, L B Drissi1,4
1. LPHE-Modeling and Simulations, Faculty of Sciences, Mohammed V University in Rabat, Morocco;
2. Center Régional des Méetiers de l'Education et de la Formation(CRMEF), Fès-Meknès, Marocco;
3. LP2 MS, University of Moulay Ismail, Faculty of Sciences, Meknes, Morocco;
4. Center of Physics and Mathematics, CPM-Morocco
Abstract  

Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The effect of random crystal field, ferromagnetic and ferrimagnetic exchange interaction on hysteresis loops and compensation phenomenon are discussed. A number of characteristic phenomena have been reported such as the observation of triple hysteresis loops at low temperatures and for negative values of random crystal field. Critical and double compensation temperatures have been also found. The obtained results are also compared to some previous works.

Keywords:  ferrimagnetic mixed Ising system      effective field theory      hysteresis loops      compensation behaviors  
Received:  01 April 2017      Revised:  23 August 2017      Accepted manuscript online: 
PACS:  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
Corresponding Authors:  L B Drissi     E-mail:  ldrissi@fsr.ac.ma

Cite this article: 

K Htoutou, Y Benhouria, A Oubelkacem, R Ahl laamara, L B Drissi Random crystal field effect on hysteresis loops and compensation behavior of mixed spin-(1,3/2) Ising system 2017 Chin. Phys. B 26 127501

[1] Kahn O 1993 Molecular Magnetism (New York:VCH)
[2] Kaneyoshi T and Nakamura Y A 1998 J. Phys.:Condens. Matter 10 3003
[3] Kaneyoshi T, Nakamura Y and Shin S 1998 J. Phys.:Condens. Matter 10 7025
[4] Jiang W, Lo V C, Bai B D and Yang J 2010 Physica A 389 2227
[5] Drillon M, Coronado E, Beltran D, Georges R 1983 Chem. Phys. 79 449
[6] Li Y and Chen B 2015 Chin. Phys. B 24 027502
[7] Mallah T, Thiébaut S, Verdaguer M and Veillet P 1993 Science 262 1554
[8] Neel L 1948 Ann. Phys. 3 137
[9] Bobák A and Jurcisin M A 1997 Physica B:Condens. Matter 233 187
[10] Bobák A and Jacur M 1995 Phys. Rev. B 51 11533
[11] Jascur M and Bobák A 1996 Acta Phys. Slovaca 46 113
[12] Bobák A and Jurcisin M 1997 Phys. Status Solidi B 204 787
[13] Tucker J W 1999 J. Magn. Magn. Mater. 195 733
[14] Bobák A and Horváth D 1999 Phys. Status Solidi B 213 459
[15] Buendia G M and Novotny M A 1997 J. Phys.:Condens. Matter bf 9 5951
[16] Kaneyoshi T 1989 Solid State Commun. 70 975
[17] Kaneyoshi T and Chen J C 1991 J. Magn. Magn. Mater. 98 201
[18] Kantar E and Ertaș M 2014 Solid State Commun. 188 71
[19] Kocakaplan Y and Kantar E 2014 Chin. Phys. B 23 046801
[20] Yigit A and Albayrak E 2017 J. Supercond. Novel Magn. 1
[21] Dakhama A 1998 Physica A 252 225
[22] Sang C X, Zhao G P, Xia W X, Wan X L, Morvan F J, Zhang X C, Xie L H, Zhang J, Du J, Yan A R and Liu P 2016 Chin. Phys. B 25 037501
[23] Vladimir S, Liu Z S and Martin D 2009 Chin. Phys. Lett. 26 017201
[24] Liu Z S and Divis 2011 Chin. Phys. Lett. 28 067302
[25] Temizer U and Ozkilic A 2013 Chin. Phys. B 22 037501
[26] Liu Z S, Vladimir S and Martin D 2009 Chin. Phys. Lett. 26 107504
[27] Ertas M and Keskin M 2013 Chin. Phys. B 22 120507
[28] Deviren B, Polat Y and Keskin M 2011 Chin. Phys. B 20 060507
[29] Boughrara M, Kerouad M and Zaim A 2014 J. Magn. Magn. Mater. 360 222
[30] Belmamoun Y and Kerouad M 2009 Chin. J. Phys. 47 100
[31] Drissi L B, Zriouel S and Bahmad L 2015 J. Magn. Magn. Mater. 374 639
[32] Drissi L B and Zriouel S 2016 J. Stat. Mech.:Theory and Experiment 2016 053206
[33] Ohkoshi S I, Abe Y, Fujishima A, Hashimoto K 1999 Phys. Rev. Lett. 82 1285
[34] Bobák A 1998 Physica A 258 140
[35] Bobák A 2000 Physica A 286 531
[36] Deviren B, Akbudak S and Keskin M 2011 Solid State Commun. 151 193
[37] Liu T S, Wei G Z and Xin Z H 1997 J. Magn. Magn. Mater. 173 179
[38] Xin Z H, Wei G Z and Liu T S 1998 J. Magn. Magn. Mater. 188 65
[39] Jiang W 2003 Phys. Rev. B 68 134432
[40] Abubrig O F, Horvath D, Bobak A and Jascur M 2001 Physica A 296 437
[41] Wei G, Zhang Q and Gu Y 2006 J. Magn. Magn. Mater. 301 245
[42] Tucker J W 2001 J. Magn. Magn. Mater. 237 215
[43] Madani M, Gaye A, El Bouziani M and Alrajhi A 2015 Physica A 437 396
[44] Imry Y 1984 J. Stat. Phys. 34 849
[45] Grinstein G 1984 J. Appl. Phys. 55 2371
[46] Aharony A 1978 Phys. Rev. B 18 3318
[47] Htoutou K, Oubelkecem A, Benhouria Y, Essaoudi I, Ainane A and Ahuja R 2017 J. Supercond. Nov. Magn. 30 1247
[48] Souza I J, de Arruda P H Z, Godoy M, Craco L and de Arruda A S Physica A 444 589
[49] Tucker J W, Saber M and Peliti L 1994 Physica A 206 497
[50] Saber M A 1997 Chin. J. Phys. 35 577
[1] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[2] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[3] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[4] Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system
C X Sang(桑成祥), G P Zhao(赵国平), W X Xia(夏卫星), X L Wan(万秀琳), F J Morvan, X C Zhang(张溪超), L H Xie(谢林华), J Zhang(张健), J Du(杜娟), A R Yan(闫阿儒), P Liu(刘平). Chin. Phys. B, 2016, 25(3): 037501.
[5] Theoretical study of mutual control mechanism between magnetization and polarization in multiferroic materials
Liu Yu (刘宇), Zhai Liang-Jun (翟良君), Wang Huai-Yu (王怀玉). Chin. Phys. B, 2015, 24(3): 037510.
[6] Micromagnetic simulation of Sm-Co/α-Fe/Sm-Co trilayers with various angles between easy axes and the film plane
Zhang Xi-Chao (张溪超), Zhao Guo-Ping (赵国平), Xia Jing (夏静), Yue Ming (岳明), Yuan Xin-Hong (袁新红), Xie Lin-Hua (谢林华). Chin. Phys. B, 2014, 23(9): 097504.
[7] First-principles study and electronic structures of Mn-doped ultrathin ZnO nanofilms
E. Salmani, A. Benyoussef, H. Ez-Zahraouy, E. H. Saidi, O. Mounkachi. Chin. Phys. B, 2012, 21(10): 106601.
[8] The hysteresis loops of a ferroelectric bilayer film with surface transition layers
Cui Lian(崔莲), Lü Tian-Quan(吕天全), Sun Pu-Nan(孙普男), and Xue Hui-Jie(薛惠杰). Chin. Phys. B, 2010, 19(7): 077701.
No Suggested Reading articles found!