CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Random crystal field effect on hysteresis loops and compensation behavior of mixed spin-(1,3/2) Ising system |
K Htoutou1,2,3, Y Benhouria3, A Oubelkacem3, R Ahl laamara1,2,4, L B Drissi1,4 |
1. LPHE-Modeling and Simulations, Faculty of Sciences, Mohammed V University in Rabat, Morocco;
2. Center Régional des Méetiers de l'Education et de la Formation(CRMEF), Fès-Meknès, Marocco;
3. LP2 MS, University of Moulay Ismail, Faculty of Sciences, Meknes, Morocco;
4. Center of Physics and Mathematics, CPM-Morocco |
|
|
Abstract Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The effect of random crystal field, ferromagnetic and ferrimagnetic exchange interaction on hysteresis loops and compensation phenomenon are discussed. A number of characteristic phenomena have been reported such as the observation of triple hysteresis loops at low temperatures and for negative values of random crystal field. Critical and double compensation temperatures have been also found. The obtained results are also compared to some previous works.
|
Received: 01 April 2017
Revised: 23 August 2017
Accepted manuscript online:
|
PACS:
|
75.10.Dg
|
(Crystal-field theory and spin Hamiltonians)
|
|
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
|
Corresponding Authors:
L B Drissi
E-mail: ldrissi@fsr.ac.ma
|
Cite this article:
K Htoutou, Y Benhouria, A Oubelkacem, R Ahl laamara, L B Drissi Random crystal field effect on hysteresis loops and compensation behavior of mixed spin-(1,3/2) Ising system 2017 Chin. Phys. B 26 127501
|
[1] |
Kahn O 1993 Molecular Magnetism (New York:VCH)
|
[2] |
Kaneyoshi T and Nakamura Y A 1998 J. Phys.:Condens. Matter 10 3003
|
[3] |
Kaneyoshi T, Nakamura Y and Shin S 1998 J. Phys.:Condens. Matter 10 7025
|
[4] |
Jiang W, Lo V C, Bai B D and Yang J 2010 Physica A 389 2227
|
[5] |
Drillon M, Coronado E, Beltran D, Georges R 1983 Chem. Phys. 79 449
|
[6] |
Li Y and Chen B 2015 Chin. Phys. B 24 027502
|
[7] |
Mallah T, Thiébaut S, Verdaguer M and Veillet P 1993 Science 262 1554
|
[8] |
Neel L 1948 Ann. Phys. 3 137
|
[9] |
Bobák A and Jurcisin M A 1997 Physica B:Condens. Matter 233 187
|
[10] |
Bobák A and Jacur M 1995 Phys. Rev. B 51 11533
|
[11] |
Jascur M and Bobák A 1996 Acta Phys. Slovaca 46 113
|
[12] |
Bobák A and Jurcisin M 1997 Phys. Status Solidi B 204 787
|
[13] |
Tucker J W 1999 J. Magn. Magn. Mater. 195 733
|
[14] |
Bobák A and Horváth D 1999 Phys. Status Solidi B 213 459
|
[15] |
Buendia G M and Novotny M A 1997 J. Phys.:Condens. Matter bf 9 5951
|
[16] |
Kaneyoshi T 1989 Solid State Commun. 70 975
|
[17] |
Kaneyoshi T and Chen J C 1991 J. Magn. Magn. Mater. 98 201
|
[18] |
Kantar E and Ertaș M 2014 Solid State Commun. 188 71
|
[19] |
Kocakaplan Y and Kantar E 2014 Chin. Phys. B 23 046801
|
[20] |
Yigit A and Albayrak E 2017 J. Supercond. Novel Magn. 1
|
[21] |
Dakhama A 1998 Physica A 252 225
|
[22] |
Sang C X, Zhao G P, Xia W X, Wan X L, Morvan F J, Zhang X C, Xie L H, Zhang J, Du J, Yan A R and Liu P 2016 Chin. Phys. B 25 037501
|
[23] |
Vladimir S, Liu Z S and Martin D 2009 Chin. Phys. Lett. 26 017201
|
[24] |
Liu Z S and Divis 2011 Chin. Phys. Lett. 28 067302
|
[25] |
Temizer U and Ozkilic A 2013 Chin. Phys. B 22 037501
|
[26] |
Liu Z S, Vladimir S and Martin D 2009 Chin. Phys. Lett. 26 107504
|
[27] |
Ertas M and Keskin M 2013 Chin. Phys. B 22 120507
|
[28] |
Deviren B, Polat Y and Keskin M 2011 Chin. Phys. B 20 060507
|
[29] |
Boughrara M, Kerouad M and Zaim A 2014 J. Magn. Magn. Mater. 360 222
|
[30] |
Belmamoun Y and Kerouad M 2009 Chin. J. Phys. 47 100
|
[31] |
Drissi L B, Zriouel S and Bahmad L 2015 J. Magn. Magn. Mater. 374 639
|
[32] |
Drissi L B and Zriouel S 2016 J. Stat. Mech.:Theory and Experiment 2016 053206
|
[33] |
Ohkoshi S I, Abe Y, Fujishima A, Hashimoto K 1999 Phys. Rev. Lett. 82 1285
|
[34] |
Bobák A 1998 Physica A 258 140
|
[35] |
Bobák A 2000 Physica A 286 531
|
[36] |
Deviren B, Akbudak S and Keskin M 2011 Solid State Commun. 151 193
|
[37] |
Liu T S, Wei G Z and Xin Z H 1997 J. Magn. Magn. Mater. 173 179
|
[38] |
Xin Z H, Wei G Z and Liu T S 1998 J. Magn. Magn. Mater. 188 65
|
[39] |
Jiang W 2003 Phys. Rev. B 68 134432
|
[40] |
Abubrig O F, Horvath D, Bobak A and Jascur M 2001 Physica A 296 437
|
[41] |
Wei G, Zhang Q and Gu Y 2006 J. Magn. Magn. Mater. 301 245
|
[42] |
Tucker J W 2001 J. Magn. Magn. Mater. 237 215
|
[43] |
Madani M, Gaye A, El Bouziani M and Alrajhi A 2015 Physica A 437 396
|
[44] |
Imry Y 1984 J. Stat. Phys. 34 849
|
[45] |
Grinstein G 1984 J. Appl. Phys. 55 2371
|
[46] |
Aharony A 1978 Phys. Rev. B 18 3318
|
[47] |
Htoutou K, Oubelkecem A, Benhouria Y, Essaoudi I, Ainane A and Ahuja R 2017 J. Supercond. Nov. Magn. 30 1247
|
[48] |
Souza I J, de Arruda P H Z, Godoy M, Craco L and de Arruda A S Physica A 444 589
|
[49] |
Tucker J W, Saber M and Peliti L 1994 Physica A 206 497
|
[50] |
Saber M A 1997 Chin. J. Phys. 35 577
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|