Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037401    DOI: 10.1088/1674-1056/25/3/037401
RAPID COMMUNICATION Prev   Next  

High-pressure Raman study of solid hydrogen up to 300 GPa

Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Gang Wu(吴刚), Xin Li(李鑫), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田)
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  

The high-pressure behavior of solid hydrogen has been investigated by in situ Raman spectroscopy upon compression to 300 GPa at ambient temperature. The hydrogen vibron frequency begins to decrease after it initially increases with pressure up to 38 GPa. This softening behavior suggests the weakening of the intramolecular bond and the increased intermolecular interactions. Above 237 GPa, the vibron frequency softens very rapidly with pressure at a much higher rate than that of phase III, corresponding to transformation from phase III into phase IV. The phase transition sequence has been confirmed from phase I to phase III and then to phase IV at 208 and 237 GPa, respectively. Previous theoretical calculations lead to the proposal of an energetically favorable monoclinic C2/c structure for phase III and orthorhombic Pbcn structure for phase IV. Up to 304 GPa, solid hydrogen is not yet an alkali metal since the sample is still transparent.

Keywords:  ultrahigh pressure      diamond anvil cell      phase transition      Raman spectra  
Received:  06 August 2015      Revised:  23 November 2015      Accepted manuscript online: 
PACS:  74.25.nd (Raman and optical spectroscopy)  
  64.60.-i (General studies of phase transitions)  
  78.30.-j (Infrared and Raman spectra)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1132), the National Natural Science Foundation of China (Grant Nos. 51032001, 11074090, 10979001, 51025206, 11274137, 11474127, and 11504127), the National Found for Fostering Talents of Basic Science, China (Grant No. J1103202), and the China Postdoctoral Science Foundation (Grant No. 2015M570265).

Corresponding Authors:  Tian Cui     E-mail:  cuitian@jlu.edu.cn

Cite this article: 

Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Gang Wu(吴刚), Xin Li(李鑫), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田) High-pressure Raman study of solid hydrogen up to 300 GPa 2016 Chin. Phys. B 25 037401

[1] Wigner E and Huntington H B 1935 J. Chem. Phys. 3 764
[2] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[3] Ceperley D M and Alder B 1987 Phys. Rev. B 36 2092
[4] Narayana C, Luo H, Orloff J and Ruoff A L 1998 Nature 393 46
[5] Loubeyre P, Occelli F and LeToullec R 2002 Nature 416 613
[6] Eremets M I and Troyan I A 2011 Nat. Mater. 10 927
[7] Howie R T, Guillaume C L, Scheler T, Goncharov A F and Gregoryanz E 2012 Phys. Rev. Lett. 108 125501
[8] Zha C, Liu Z and Hemley R 2012 Phys. Rev. Lett. 108 146402
[9] Huang X, Duan D, Wang K, Yang X, Jiang S, Li W, Li F, Zhou Q, Jin X, Zou B, Liu B, and Cui T 2013 J. Phys. Chem. C 117 8381
[10] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968
[11] Jiang S, Huang X, Duan D, Zheng S, Li F, Yang X, Zhou Q, Liu B and Cui T 2014 J. Phys. Chem. C 118 3236
[12] Hemley R J and Mao H K 1988 Phys. Rev. Lett. 108 125501
[13] Mao H and Hemley R 1994 Rev. Mod. Phys. 66 671
[14] Howie R T, Guillaume C L, Scheler T, Goncharov A F and Gregoryanz E 2012 Phys. Rev. Lett. 108 125501
[15] Lorenzana H, Silvera I and Goettel K 1990 Phys. Rev. Lett. 64 1939
[16] Goncharenko I and Loubeyre P 2005 Nature 435 1206
[17] Goncharov A F, Hemley R J, Mao H K and Shu J 1998 Phys. Rev. Lett. 80 101
[18] Huang Y, Huang X, Zhao Z, Li W, Jiang S, Duan D, Bao K, Zhou Q, Liu B and Cui T 2014 J. Chem. Phys. 140 244507
[19] Chen X J, Struzhkin V V, Song Y, Goncharov A F, Ahart M, Liu Z, Mao H and Hemley R J 2008 Proc. Natl. Acad. Sci. USA 105 20
[20] Weng X D, Hoffmann R and Ashcroft N W 2011 J. Am. Chem. Soc. 133 9023
[21] Li Q Q, Zhang X, Wu J B, Lu Y, Tan P H, Feng Z H, Li J, Wei C and Liu Q B 2014 Acta Phys. Sin. 63 147802 (in Chinese)
[22] Yang Y X, Gallais Y, Fang Z H, Shi J and Xiong R 2015 Chin. Phys. B 24 027401
[23] Zhang J, Zhang D M, Zhang Q L and Yin S T 2015 Chin. Phys. B 24 017801
[24] Gao C W, Wang Y Y, Jiang J, Nan H Y and Ni Z H 2015 Chin. Phys. Lett. 32 058101
[25] Akahama Y and Kawamura H 2004 J. Appl. Phys. 96 3748
[26] Sun L, Ruoff A and Stupian G 2005 Appl. Phys. Lett. 86 014103
[27] Akahama Y and Kawamura H 2010 J. Phys.: Conf. Ser. 215 012195
[28] Goncharov A F, Hemley R J and Mao H 2011 J. Chem. Phys. 134 174501
[29] Baer B J, Evans W J and Yoo C S 2007 Phys. Rev. Lett. 98 235503
[30] Hemley R J, Mao H K and Hanfland M 1991 Spectroscopic Investigations of the Insulatormetal Transition in Solid Hydrogen. Molecular Systems under High Pressure, Pucci R and Piccitto G eds. (Amsterdam: Elsevier) pp. 223-243
[31] Loubeyre P, Occelli F and Dumas P 2013 Phys. Rev. B 87 134101
[32] Zha C, Cohena R E, Mao H K and Hemley R J 2014 Proc. Natl. Acad. Sci. USA 111 4792
[33] Goncharov A F, Mazin I I, Eggert J H, Hemley R J and Mao H 1995 Phys. Rev. Lett. 75 2514
[34] Pickard C J and Needs R J 2007 Nat. Phys. 3 473
[35] Akahama Y, Nishimura M, Kawamura H, Hirao N, Ohishi Y and Takemura K 2010 Phys. Rev. B 82 060101
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[12] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
No Suggested Reading articles found!