Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 017103    DOI: 10.1088/1674-1056/25/1/017103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin texturing in quantum wires with Rashba and Dresselhaus spin-orbit interactions and in-plane magnetic field

B Gisi1, S Sakiroglu2, İ Sokmen2
1. Physics Department, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir 35390, Turkey;
2. Physics Department, Faculty of Science, Dokuz Eylül University, İzmir 35390, Turkey
Abstract  In this work, we investigate the effects of interplay of spin-orbit interaction and in-plane magnetic fields on the electronic structure and spin texturing of parabolically confined quantum wire. Numerical results reveal that the competing effects between Rashba and Dresselhaus spin-orbit interactions and the external magnetic field lead to a complicated energy spectrum. We find that the spin texturing owing to the coupling between subbands can be modified by the strength of spin-orbit couplings as well as the magnitude and the orientation angle of the external magnetic field.
Keywords:  spin-orbit coupling      quantum wire      spin texture  
Received:  21 July 2015      Revised:  25 August 2015      Accepted manuscript online: 
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  75.70.Tj (Spin-orbit effects)  
  73.21.Hb (Quantum wires)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Corresponding Authors:  B Gisi     E-mail:  bircangisi@gmail.com

Cite this article: 

B Gisi, S Sakiroglu, İ Sokmen Spin texturing in quantum wires with Rashba and Dresselhaus spin-orbit interactions and in-plane magnetic field 2016 Chin. Phys. B 25 017103

[1] Pershin Y V, Nesteroff J A and Privman V 2004 Phys. Rev. B 69 121306
[2] Perroni C A, Bercioux D, Ramaglia C A and Cataudella V 2007 J. Phys.: Condens. Mattter 19 186227
[3] Kelly M J 1995 Low Dimensional Semiconductors: Materials, Physics, Technology, Devices (Oxford: Oxford University Press)
[4] Mireles F K G 2001 Phys. Rev. B 64 024426
[5] Wang Y, Djie H S, Ooi B S, Rotella P, Dowd P, Aimez V, Cao Y and Zhang Y H 2007 Thin Solid Films 515 4352
[6] Malet F, Pi M, Barranco M, Serra L and Lipparini E 2007 Phys. Rev. B 76 115306
[7] Serra L, Sánchez D and López R 2005 Phys. Rev. B 72 235309
[8] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)
[9] Zhang T Y, Zhao W and Liu M 2009 J. Phys.: Condens. Matter 21 335501
[10] Dresselhaus G 1955 Phys. Rev. 100 580
[11] Rashba E I 1960 Sov. Phys. Solid. State 2 1109
[12] Guzenko V A, Knobbe J, Hardtdegen H and Schäpers Th 2006 Appl. Phys. Lett. 88 032102
[13] Krich J J and Halperin B I 2007 Phys. Rev. Lett. 98 226802
[14] Canham L T 1990 Appl. Phys. Lett. 57 1046
[15] Guay C H L, Hýghes T L, Sulpizio J A, Pfeiffer L N, Baldwin K W, West K W, Goldhaber-Gordon D and de Picciatto R 2010 Nat. Phys. 6 336
[16] Gujarathi S, Alam K M and Pramanik S 2012 Phys. Rev. B 85 045413
[17] Orellana P A, Dominguez-Adame F, Gomez I and de Guevara M L L 2003 Phys. Rev. B 67 085321
[18] Abonov A 2012 Phys. Rev. B 85 085311
[19] Schäpers Th, Knobbe J and Guzenko V A 2004 Phys. Rev. B 69 235323
[20] Knobbe J and Schäpers Th 2005 Phys. Rev. B 71 035311
[21] Debald S and Kramer B 2005 Phys. Rev. B 71 115322
[22] de Andrade e Silva E A and La Rocaa G C 2003 Phys. Rev. B 67 165318
[23] Erlingson S J, Egues J C and Loss D 2006 Phys. Status Solidi A 3 4317
[24] Governale M and Zülicke U 2002 Phys. Rev. B 66 073311
[25] Governale M and Zülicke U 2004 Solid State Commun. 131 581
[26] Zhang S, Liang R, Zhang E, Zhang L and Liu Y 2006 Phys. Rev. B 73 155316
[27] Moroz A V and Barnes C H W 2000 Phys. Rev. B 61 R2464
[28] Pramanik S, Bandyopadhyay S and Cahay M 2007 Phys. Rev. B 76 155325
[29] Upadhyaya P, Pramanik S, Bandyopadhyay S and Cahay M 2008 Phys. Rev. B 77 045306
[30] Upadhyaya P, Pramanik S and Bandyopadhyay S 2008 Phys. Rev. B 77 155439
[31] Sarikurt S, Sakiroglu S, Akgungor K and Sokmen I 2014 Chin. Phys. B 23 017102
[32] Tang C S, Chang S Y and Cheng J 2012 Phys. Rev. B 86 125321
[33] Khordad R 2013 J. Lumin. 134 201
[34] Lahon S, Kumar M, Jha P K and Mohan M 2013 J. Lumin. 144 149
[35] Yang W and Chang K 2006 Phys. Rev. B 74 193314
[36] Krich J J and Halperin B I 2007 Phys. Rev. Lett. 98 226802
[37] Zienkiewicz O C, Taylor R L and Zhu J Z 2005 The Finite Element Method: Its Basis and Fundamentals (5$th edn.) (Planta Tree)
[38] Pask J E, Klein B M, Sterne P A and Fong C Y 2001 Comput. Phys. Commun. 135 1
[39] Wang C, Wang H and Zhang Q 1999 Chin. Phys. Lett. 16 373
[40] Miller J B, Zumbühl D M, Marcus C M, Lyanda-Geller Y B, Goldhaber-Gordon D, Campman K and Gossard A C 2003 Phys. Rev. Lett. 90 076807
[41] Könemann J, Haug R J, Maude D K, Falko V I and Altshuler B L 2007 Phys. Rev. Lett. 94 226404
[42] Moroz A V and Barnes C H W 1999 Phys. Rev. B 60 14272
[43] Schliemann J, Egues J C and Loss D 2003 Phys. Rev. Lett. 90 146801
[44] Sheng J S and Chang K 2006 Phys. Rev. B 74 235315
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[9] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[10] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
No Suggested Reading articles found!