|
|
Phase equilibrium of Cd1-xZnxS alloys studied by first-principles calculations and Monte Carlo simulations |
Fu-Zhen Zhang(张付珍)1, Hong-Tao Xue(薛红涛)1, Fu-Ling Tang(汤富领)1, Xiao-Kang Li(李小康)1, Wen-Jiang Lu(路文江)1, Yu-Dong Feng(冯煜东)2 |
1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2. Science and Technology on Surface Engineering Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China |
|
|
Abstract The first-principles calculations based on density functional theory combined with cluster expansion techniques and Monte Carlo (MC) simulations were used to study the phase diagrams of both wurtzite (WZ) and zinc-blende (ZB) Cd1-xZnxS alloys. All formation energies are positive for WZ and ZB Cd1-xZnxS alloys, which means that the Cd1-xZnxS alloys are unstable and have a tendency to phase separation. For WZ and ZB Cd1-xZnxS alloys, the consolute temperatures are 655 K and 604 K, respectively, and they both have an asymmetric miscibility gap. We obtained the spatial distributions of Cd and Zn atoms in WZ and ZB Cd0.5Zn0.5S alloys at different temperatures by MC simulations. We found that both WZ and ZB phases of Cd0.5Zn0.5S alloy exhibit phase segregation of Cd and Zn atoms at low temperature, which is consistent with the phase diagrams.
|
Received: 23 June 2015
Revised: 13 September 2015
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
64.75.-g
|
(Phase equilibria)
|
|
64.75.Qr
|
(Phase separation and segregation in semiconductors)
|
|
63.70.+h
|
(Statistical mechanics of lattice vibrations and displacive phase transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164014 and 11364025) and Gansu Science and Technology Pillar Program, China (Grant No. 1204GKCA057). |
Corresponding Authors:
Hong-Tao Xue, Fu-Ling Tang
E-mail: xueht987@163.com;tfl03@mails.tsinghua.edu.cn
|
Cite this article:
Fu-Zhen Zhang(张付珍), Hong-Tao Xue(薛红涛), Fu-Ling Tang(汤富领), Xiao-Kang Li(李小康), Wen-Jiang Lu(路文江), Yu-Dong Feng(冯煜东) Phase equilibrium of Cd1-xZnxS alloys studied by first-principles calculations and Monte Carlo simulations 2016 Chin. Phys. B 25 013103
|
[1] |
Yamada A, Matsubara K and Sakurai K 2004 Appl. Phys. Lett. 85 5607
|
[2] |
Gao X D, Li X M and Yu W D 2004 Thin Solid Films 468 43
|
[3] |
Li D F, Li B L, Xiao H Y and Dong H N 2011 Chin. Phys. B 20 067101
|
[4] |
Chen D S, Yang J, Xu F, Zhou P H and Du H W 2013 Chin. Phys. B 22 018801
|
[5] |
Baykul M C and Orhan N 2010 Thin Solid Films 518 1925
|
[6] |
Chavhan S D, Senthilarasu S and Lee S H 2008 Appl. Surf. Sci. 254 4539
|
[7] |
Kumar T P, Saravanakumar S and Sankaranarayanan K 2011 Appl. Surf. Sci. 257 1923
|
[8] |
Devadoss I, Muthukumaran S and Ashokkumar M 2014 J. Mater. Sci: Mater. Electron. 25 3308
|
[9] |
Peter A J and Lee C W 2012 Chin. Phys. B 21 087302
|
[10] |
Kokotov M and Hodes G 2010 Chem. Mater. 22 5483
|
[11] |
Mariappan R, Ragavendar M and Ponnuswamy V 2011 J. Alloys Compd. 509 7337
|
[12] |
Zhang T W, Zhu C J, Wang C Z and Li J 2013 Rare Metals 32 47
|
[13] |
Dong Y J, Zhou L M and Wu S M 2014 Mater. Sci. Semicond. Process. 19 78
|
[14] |
Hou J W, Lv X Y, Li Z H, Zou H and Zeng X F 2014 J. Alloys Compd. 616 97
|
[15] |
Hetterich M, Petillon S, Petri W, Dinger A, Grün M and Klingshirn C 1996 J. Cryst. Growth 159 81
|
[16] |
Borse S V, Chavhan S D and Sharma R 2007 J. Alloys Compd. 436 407
|
[17] |
Akdoğan Y, Üzüm C, Dag Ö and Coombs N 2006 J. Mater. Chem. 16 2048
|
[18] |
Zu S N, Wang Z Y, Liu B, Fan X P and Qian G D 2009 J. Alloys Compd. 476 689
|
[19] |
Yang G R, Zhang Q, Chang W and Yan W 2013 J. Alloys Compd. 580 29
|
[20] |
He X B and Gao L 2010 J. Colloid Interface Sci. 349 159
|
[21] |
Jiao Z Y, Niu Y J, Shen K S and Huang X F 2014 Mol. Phys. 112 1057
|
[22] |
Wan F C, Tang F L, Lu W J, Si F J, Bao H W and Xue H T 2013 Journal of Henan University 43 32 (in Chinese)
|
[23] |
Wu J C, Zheng J W, Zacherl C L, Wu P, Liu Z K and Xu R 2011 J. Phys. Chem. C 115 19741
|
[24] |
Lu J B, Dai Y, Guo M, Wei W, Ma Y D, Han S H and Huang B B 2012 ChemPhysChem 13 147
|
[25] |
Zhou Z H, Shi J W, Wu P and Guo L J 2014 ChemPhysChem 15 3125
|
[26] |
Zhou Z H, Shi J W, Wu P and Guo L J 2014 Phys. Status Solidi B 251 655
|
[27] |
Sharma R C and Chang Y A 1996 J. Phase Equilib. 17 425
|
[28] |
Sharma R C and Chang Y A 1996 J. Phase Equilib. 17 261
|
[29] |
Stöhr M, Podloucky R and Müller S 2009 J. Phys.: Condens. Matter 21 134017
|
[30] |
Liu B, Seko A and Tanaka I 2012 Phys. Rev. B 86 245202
|
[31] |
Li X K, Xue H T, Tang F L and Lu W J 2015 Mater. Sci. Semicond. Process. 39 96
|
[32] |
Xue H T, Tang F L, Li X K, Wan F C, Lu W J, Rui Z Y and Feng Y D 2014 Mater. Sci. Semicond. Process. 25 251
|
[33] |
Ludwig C D R, Gruhn T and Felser C 2010 Phys. Rev. Lett. 105 025702
|
[34] |
Sanchez J M, Ducastelle F and Gratias D 1984 Physica A 128 334
|
[35] |
Lu Z W, Wei S H, Zunger A, Frota-Pessoa S and Ferreira L G 1991 Phys. Rev. B 44 512
|
[36] |
Zunger A, Wang L G, Hart G L W and Sanati M 2002 Modell. Simul. Mater. Sci. Eng. 10 685
|
[37] |
Sanchez J M 2010 Phys. Rev. B 81 224202
|
[38] |
Ravi C, Sahu H K, Valsakumar M C and Van de Walle A 2010 Phys. Rev. B 81 104111
|
[39] |
Van de Walle A, Asta M and Ceder G 2002 Calphad 26 539
|
[40] |
Van de Walle A and Asta M 2002 Modell. Simul. Mater. Sci. Eng. 10 521
|
[41] |
Van de Walle A and Ceder G 2002 J. Phase Equilib. 23 348
|
[42] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[43] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[44] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[45] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[46] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[47] |
Adjaoud O, Steinle-Neumann G, Burton B P and Van de Walle A 2009 Phys. Rev. B 80 134112
|
[48] |
Blum V and Zunger A 2004 Phys. Rev. B 70 155108
|
[49] |
Blum V and Zunger A 2005 Phys. Rev. B 72 020104
|
[50] |
Ferreira L G, Wei S H and Zunger A 1991 Int. J. High Perform. Comput. Appl. 5 34
|
[51] |
Zhong X H, Feng Y Y, Knoll W and Han M Y 2003 J. Am. Chem. Soc. 125 13559
|
[52] |
Tosun B S, Pettit C, Campbell S A and Aydil E S 2012 ACS Appl. Mater. Interfaces 4 3676
|
[53] |
Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
|
[54] |
Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comput. Chem. 28 899
|
[55] |
Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
|
[56] |
Ouyang J Y, Ripmeester J A, Wu X H, Kingston D, Yu K, Joly A G and Chen W 2007 J. Phys. Chem. C 111 16261
|
[57] |
Ouyang J Y, Ratcliffe C I, Kingston D, Wilkinson B, Kuijper J, Wu X H, Ripmeester J A and Yu K 2008 J. Phys. Chem. C 112 4908
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|