Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127802    DOI: 10.1088/1674-1056/24/12/127802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical properties of F-and H-terminated armchair silicon nanoribbons

Lu Dao-Bang (鲁道邦), Pu Chun-Ying (濮春英), Song Yu-Ling (宋玉玲), Pan Qun-Na (潘群娜), Zhou Da-Wei (周大伟), Xu Hai-Ru (徐海如)
College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China
Abstract  The optical properties of F-and H-terminated silicon nanoribbons with armchair edges (F-and H-terminated ASiNRs) are compared by using the first-principles within the density function theory (DFT) framework. The results show that compared with for H-terminated 7-ASiNR, the dielectric function for the F-terminated 7-ASiNR has a red shift, which is mainly attributed to the narrower band gap because of the σ-π mixing effect of F-Si bonds in F-terminated 7-ASiNR. The peaks in the energy loss spectra for both systems represent the characteristics associated with the plasma resonance, which correspond to the trailing edges in the reflection spectra. These properties show that the different terminated atoms in 7-ASiNRs affect mainly the optical properties in the low energy range. Because of the rich optical properties, the 7-ASiNR could be a potential candidate for photoelectric nanodevice.
Keywords:  ASiNRs      optical properties      first principle      termination  
Received:  21 May 2015      Revised:  21 August 2015      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.Pr (Electronic structure of graphene)  
Fund: Project supported by the Henan Provincial Joint Funds of the National Natural Science Foundation of China (Grant Nos. U1404608 and U1304612), the Science and Technology Key Projects of Henan Province, China (Grant No. 1502102210124), and the Special Fund for Theoretical Science Foundation of Nanyang Normal University, China (Grant No. ZX2013018).
Corresponding Authors:  Song Yu-Ling     E-mail:  yuling985@163.com

Cite this article: 

Lu Dao-Bang (鲁道邦), Pu Chun-Ying (濮春英), Song Yu-Ling (宋玉玲), Pan Qun-Na (潘群娜), Zhou Da-Wei (周大伟), Xu Hai-Ru (徐海如) Optical properties of F-and H-terminated armchair silicon nanoribbons 2015 Chin. Phys. B 24 127802

[1] Du A J, Smith S C and Lu G Q 2007 Chem. Phys. Lett. 447 181
[2] Barone V and Peralta J E 2008 Nano Lett. 8 2210
[3] Zhang Z H and Guo W L 2008 Phys. Rev. B 77 075403
[4] Zschieschang U, Klauk H, Müeller I B, Strudwick A J, Hintermann T, Schwab M G, Narita A, Feng X L, Müellen K and Thomas Weitz R 2015 Adv. Electron. Mater. 1 1400010
[5] Ding Y, Wang Y L and Ni J 2009 Appl. Phys. Lett. 95 123105
[6] Okada S and Oshiyama A 2001 Phys. Rev. Lett. 87 146803
[7] Strek W, Cichy B, Radosinski L, Gluchowski P, Marciniak L, Lukaszewicz M and Hreniak D 2015 Light: Science & Applications 4 e237
[8] Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115
[9] Cahangirov S, Topsakal M, Aktürk E, Çhin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[10] Cahangirov S, Topsakal M and Ciraci S 2010 Phys. Rev. B 81 195120
[11] Yang Y N, Zhang J M and Xu K W 2014 Physica E 57 21
[12] Song Y L, Zhang S, Lu D B, Xu H R, Wang Z, Zhang Y and Lu Z W 2013 Eur. Phys. J. B 86 488
[13] Cheng C Q, Li G, Zhang W D, Li P W, Hu J, Sang S B and Deng X 2015 Acta Phys. Sin. 64 067102 (in Chinese)
[14] Yu Z Q, Zhang C H and Lang J X 2014 Acta Phys. Sin. 63 067102 (in Chinese)
[15] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[16] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[17] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[18] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Saha S and Sinha T P 2000 Phys. Rev. B 62 8828
[22] Li L Y, Wang W H, Liu H, Liu X D, Song Q G and Ren S W 2009 J. Phys. Chem. C 113 8460
[23] Allali D, Bouhemadou A and Bin-Omran S 2011 Compt. Mater. Sci. 51 194
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[3] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[4] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[5] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[6] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[7] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[8] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[9] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[10] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[11] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[12] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[13] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[14] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[15] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
No Suggested Reading articles found!