CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms |
Yiming Zhang(张一鸣)1, Jing Liu(刘景)2, Chun Li(李春)1,3,†, Wei Jin(金蔚)4, Georgios Lefkidis2,1, and Wolfgang Hübner2 |
1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China; 2 Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, P. O. Box 3049, 67653 Kaiserslautern, Germany; 3 Department of Mechanical Engineering, University of Manitoba, Winnipeg MB R3T 5V6, Canada; 4 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract We perform first-principles calculations and coherent laser-matter interaction analyses to investigate the laser-induced ultrafast spin flip on graphene nanoflakes (GNFs) with transition metal elements attached on the boundary [TM&GNFs (TM=Fe, Co, Ni)]. It is shown that the spin-flip process on TM&GNFs is highly influenced by the involved element species and the position attached to the nanoflakes. Furthermore, taking Ni&GNF as an example, the first-principles tensile test predicts that the variation of the C-Ni bond length plays an important role in the spin density distribution, especially for the low-lying magnetic states, and can therefore dominate the spin-flip processes. The fastest spin-flip scenario is achieved within 80 fs in a Ni&GNF structure under 10% tensile strain along the C-Ni bond. The local deformation modulation of spin flip provides the precursory guidance for further study of ultrafast magnetization control in GNFs, which could lead to potential applications in future integrated straintronic devices.
|
Received: 22 December 2020
Revised: 04 February 2021
Accepted manuscript online: 16 March 2021
|
PACS:
|
81.07.Nb
|
(Molecular nanostructures)
|
|
77.80.bn
|
(Strain and interface effects)
|
|
75.78.Jp
|
(Ultrafast magnetization dynamics and switching)
|
|
81.07.Nb
|
(Molecular nanostructures)
|
|
75.78.Jp
|
(Ultrafast magnetization dynamics and switching)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11872309, 12172293, and 11504223), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2020JM-120), and the Program of China Scholarships Council (Grant No. 201906295029). |
Corresponding Authors:
Chun Li
E-mail: lichun@nwpu.edu.cn
|
Cite this article:
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms 2021 Chin. Phys. B 30 097702
|
[1] Stampfer C, Schurtenberger E, Molitor F, Güttinger J, Ihn T and Ensslin K 2008 Nano Lett. 8 2378 [2] Sun J Z, Zhang L and Gao F 2016 Chin. Phys. B 25 108701 [3] Wang X F, Zhao H M, Yang Y and Ren T L 2017 Chin. Phys. B 26 038501 [4] Chen X Y, Tian Z, Li Q, Li S X, Zhang X Q, Ouyang C M, Gu J Q, Han J G and Zhang W L 2020 Chin. Phys. B 29 077803 [5] Kuc A and Heine T 2010 Phys. Rev. B 81 085430 [6] Gao Y and Okada S 2020 Carbon 157 33 [7] Yang S, Lohe M R, Müllen K and Feng X 2016 Adv. Mater. 28 6213 [8] Mukherjee M D, Dhand C, Dwivedi N, Singh B P, Sumana G, Agarwal V V, Tawale J S and Malhotra B D 2014 Sensor. Actuat. B-Chem. 210 281 [9] Van O J, Akhmerov A R, Beenakker C W J and Wimmer M 2011 Phys. Rev. B 84 1 [10] Enoki T, Fujii S and Takai K 2011 Carbon 50 3141 [11] Pavliček N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J and Gross L 2017 Nat. Nanotech. 12 308 [12] Li J, Sanz S, Castro-Esteban J, Vilas-Varela M, Freferiksen T and Pe? na D 2020 Phys. Rev. Lett. 124 177201 [13] Hu R, Fan Z Q, Fu C H, Nie L Y, Huang W R and Zhang Z H 2018 Carbon 126 93 [14] Melle-Franco M 2020 Nat. Nanotech. 15 8 [15] Wang W L, Yazyev O V, Meng S and Kaxiras E 2009 Phys. Rev. Lett. 102 157201 [16] Brotons-Gisbert M, Andres-Penares D, Suh J, Hidalgo F, Abargues R, Rodráguez-Cantó P J, Segura A, Cros A, Tobias G, Canadell E, Ordejon P, Wu J Q, Martinez-Pastor J P and Sánchez-Royo J F 2016 Nano Lett. 16 3221 [17] Uzengi O and Ciraci S 2017 Phys. Rev. B 95 125413 [18] Reddy K, Mudusu D and Lee S 2019 Carbon 152 954 [19] Zhang G X, Jin X Y, Li H Y, Wang L, Hu C J and Sun X M 2016 Sci. Chin. -Mater. 59 337 [20] Cai C Y and Chen J H 2018 Chin. Phys. B 27 067304 [21] Kheyri A and Nourbakhsh Z 2016 Chin. Phys. B 25 093102 [22] Zhou Y G, Zu X T, Gao F, Lv H F and Xiao H Y 2009 Appl. Phys. Lett. 95 123119 [23] Milowska K Z and Majewski J A 2014 J. Phys. Chem. C 118 17395 [24] Giovanni M, Poh H L, Ambrosi A, Zhao G, Sofer Z, Sanek F, Khezri B, Webster R D and Pumera M 2012 Nanoscale 4 5002 [25] Cho B, Yoon J, Hahm M G, Kim D H, Kim A R, Kahng Y H, Park S W, Lee Y J, Park S G, Kwon J D, Kim C S, Song M, Jeong Y, Nam K S and Ko H C 2014 J. Mater. Chem. C 2 5280 [26] Batzill M 2012 Surf. Sci. Rep. 67 83 [27] Voloshina E and Dedkov Y 2012 Phys. Chem. Chem. Phys. 14 13502 [28] Muhammad R, Yong S, He P T and Muhammad H 2017 Appl. Surf. Sci. 399 20 [29] Santos E J G, Ayuela A, Fagan S B, Mendes F J, Azevedo D L, Souza F A G and Sánchez-Portal D 2008 Phys. Rev. B 78 195420 [30] Wu M, Cao C and Jiang J Z 2010 New J. Phys. 12 063020 [31] Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykk? P and Nieminen R M 2009 Phys. Rev. Lett. 102 126807 [32] Santos E J G, Sánchez-Portal D and Ayuela A 2010 Phys. Rev. B 81 125433 [33] Gao Z Y, Xu S P, Li L L, Yan G, Yang W J, Wu C C and Gates I D 2020 Appl. Surf. Sci. 516 146037 [34] Shi L J, Yang L Z, Deng J Q, Tong L H, Wu Q L, Zhang L, Zhang L J, Yin L J and Qin Z H 2020 Carbon 165 169 [35] Lee C, Wei X, Kysar J W and Hone J 2012 Science 321 385 [36] Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y F, Rasteli A and Schmidt O G 2010 Nano Lett. 10 3453 [37] Ferralis N, Maboudian R and Carraro C 2008 Phys. Rev. Lett. 101 156801 [38] Yoon D, Son Y and Cheong H 2011 Nano Lett. 11 3227 [39] Torchio R, Kvashnin Y O, Pascarelli S, Mathon O, Marini C and Genovese L 2011 Phys. Rev. Lett. 107 237202 [40] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G and Gao H J 2009 Chin. Phys. B 18 3008 [41] Si M S, Li J Y, Xue D S and Zhang G P 2013 Phys. Rev. B 88 144425 [42] Liu J, Zhang Y M, Li C, Jin W, Lefkidis G and Hübner W 2020 Phys. Rev. B 102 024416 [43] Lefkidis G, Zhang G P and Hübner W 2009 Phys. Rev. Lett. 103 217401 [44] Li C, Jin W, Lefkidis G and Hübner W 2011 Phys. Rev. B 84 054415 [45] Lefkidis G and Hübner W 2007 Phys. Rev. B 76 014418 [46] Li C, Zhang S B, Jin W, Lefkidis G and Hübner W 2014 Phys. Rev. B 89 184404 [47] Li C, Zhang S B, Jin W, Lefkidis G and Hübner W 2013 IEEE Trans. Magn. 49 3195 [48] Lefkidis G, Jin W, Liu J, Dutta D and Hübner W 2020 J. Phys. Chem. Lett. 11 2592 [49] Li C, Zhang S B, Jin W, Lefkidis G and Hübner W 2012 Acta Phys. Sin. 61 177502 (in Chinese) [50] Li C, Yang F, Lefkidis G and Hübner W 2011 Acta Phys. Sin. 60 017802 (in Chinese) [51] Li C, Liu J, Zhang S B, Lefkidis G and Hübner W 2015 Carbon 87 153 [52] Zhang N, Du H, Chang J, Jin W, Li C, Lefkidis G and Hübner W 2018 Phys. Rev. B 98 104431 [53] Li C, Liu J, Lefkidis G and Hübner W 2017 Phys. Chem. Chem. Phys. 19 673 [54] Huang R, Li C, Jin W, Lefkidis G and Hübner W 2019 Acta Phys. Sin. 68 023101 (in Chinese) [55] Liu J, Li C, Jin W, Lefkidis G and Hübner W 2021 Phys. Rev. Lett. 126 037402 [56] Li C, Zhang S, Jin W, Xiang H P, Lefkidis G and Hübner W 2012 J. Magn. Magn. Mater. 324 4024 [57] Jin W, Rupp F, Chevalier K, Wolf M M N, Rojas M C, Lefkidis G, Krüger H J, Diller R and Hübner W 2012 Phys. Rev. Lett. 109 267209 [58] Nakatsuji H 1979 Chem. Phys. Lett. 67 329 [59] Hartenstein T, Li C, Lefkidis G and Hübner W 2008 J. Phys. D: Appl. Phys. 41 164006 [60] Chaudhuri D, Lefkidis G and Hübner W 2017 Phys. Rev. B 96 184413 [61] Wei Z, Feng Y and Ma J 2020 J. Energy Chem. 48 322 [62] Li X F, Li Q K, Cheng J, Liu L, Yan Q, Wu Y, Zhang X H, Wang Z Y, Qin Q and Luo Y 2016 J. Am. Chem. Soc. 138 8706 [63] Hu S, Chen X, Li Q, Li F, Fan Z, Wang Z, Wang Y, Zhang B and Wu G 2017 Appl. Catal. B Environ. 201 58 [64] Santos E J G, Ayuela A and Sánchez-Portal D 2010 New J. Phys. 12 053012 [65] Senapati L, Nayak S K, Rao B K and Jena P 2003 J. Chem. Phys. 118 8671 [66] Kandalam A K, Kiran B, Jena P, Li X, Grubisic A and Bowen K H 2007 J. Chem. Phys. 126 084306 [67] Kandalam A K, Jena P, Li X, Eustis S N and Bowen K H 2008 J. Chem. Phys. 129 134308 [68] Li C, Jin W, Xiang H P Lefkidis G and Hübner W 2011 Phys. Rev. B 84 054415 [69] Xiang H P, Lefkidis G and Hübner W 2012 Phys. Rev. B 86 134402 [70] Lefkidis G and Hübner W 2006 Phys. Rev. B 74 155106 [71] Habib A, Riaz S, Ahmad I, Iqbal D N and Kamal S 2021 J. Saudi Chem. Soc. 25 101178 [72] Drera G, Cepek C, Patera L L, Bondino F, Magnano E, Nappini S, Africh C, Lodi-Rizzini A, Joshi N, Ghosh P, Barla A, Mahatha S K, Pagliara S, Giampietri A, Pintossi C and Sangaletti L 2017 Phys. Rev. B 96 165442 [73] Germán E, Simonettia S, Pronsato E, Juan A and Brizuela G 2008 Appl. Surf. Sci. 254 5831 [74] Hayriyan L A, Mkrtchyan A F, Moskalenko M A, Maleev V I, Gugkaeva Z T, Ilyin M M, Babievsky K K, Dorovatovskii P V, Khrustalev V N, Peregudov A S and Belokon Y N 2018 Mendeleev Commun. 28 464 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|