Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097702    DOI: 10.1088/1674-1056/abeef1

Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms

Yiming Zhang(张一鸣)1, Jing Liu(刘景)2, Chun Li(李春)1,3,†, Wei Jin(金蔚)4, Georgios Lefkidis2,1, and Wolfgang Hübner2
1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China;
2 Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, P. O. Box 3049, 67653 Kaiserslautern, Germany;
3 Department of Mechanical Engineering, University of Manitoba, Winnipeg MB R3T 5V6, Canada;
4 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
Abstract  We perform first-principles calculations and coherent laser-matter interaction analyses to investigate the laser-induced ultrafast spin flip on graphene nanoflakes (GNFs) with transition metal elements attached on the boundary [TM&GNFs (TM=Fe, Co, Ni)]. It is shown that the spin-flip process on TM&GNFs is highly influenced by the involved element species and the position attached to the nanoflakes. Furthermore, taking Ni&GNF as an example, the first-principles tensile test predicts that the variation of the C-Ni bond length plays an important role in the spin density distribution, especially for the low-lying magnetic states, and can therefore dominate the spin-flip processes. The fastest spin-flip scenario is achieved within 80 fs in a Ni&GNF structure under 10% tensile strain along the C-Ni bond. The local deformation modulation of spin flip provides the precursory guidance for further study of ultrafast magnetization control in GNFs, which could lead to potential applications in future integrated straintronic devices.
Keywords:  graphene nanoflakes      straintronics      spin dynamics      strain effect      first principles  
Received:  22 December 2020      Revised:  04 February 2021      Accepted manuscript online:  16 March 2021
PACS:  81.07.Nb (Molecular nanostructures) (Strain and interface effects)  
  75.78.Jp (Ultrafast magnetization dynamics and switching)  
  81.07.Nb (Molecular nanostructures)  
  75.78.Jp (Ultrafast magnetization dynamics and switching)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11872309, 12172293, and 11504223), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2020JM-120), and the Program of China Scholarships Council (Grant No. 201906295029).
Corresponding Authors:  Chun Li     E-mail:

Cite this article: 

Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms 2021 Chin. Phys. B 30 097702

[1] Stampfer C, Schurtenberger E, Molitor F, Güttinger J, Ihn T and Ensslin K 2008 Nano Lett. 8 2378
[2] Sun J Z, Zhang L and Gao F 2016 Chin. Phys. B 25 108701
[3] Wang X F, Zhao H M, Yang Y and Ren T L 2017 Chin. Phys. B 26 038501
[4] Chen X Y, Tian Z, Li Q, Li S X, Zhang X Q, Ouyang C M, Gu J Q, Han J G and Zhang W L 2020 Chin. Phys. B 29 077803
[5] Kuc A and Heine T 2010 Phys. Rev. B 81 085430
[6] Gao Y and Okada S 2020 Carbon 157 33
[7] Yang S, Lohe M R, Müllen K and Feng X 2016 Adv. Mater. 28 6213
[8] Mukherjee M D, Dhand C, Dwivedi N, Singh B P, Sumana G, Agarwal V V, Tawale J S and Malhotra B D 2014 Sensor. Actuat. B-Chem. 210 281
[9] Van O J, Akhmerov A R, Beenakker C W J and Wimmer M 2011 Phys. Rev. B 84 1
[10] Enoki T, Fujii S and Takai K 2011 Carbon 50 3141
[11] Pavliček N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J and Gross L 2017 Nat. Nanotech. 12 308
[12] Li J, Sanz S, Castro-Esteban J, Vilas-Varela M, Freferiksen T and Pe? na D 2020 Phys. Rev. Lett. 124 177201
[13] Hu R, Fan Z Q, Fu C H, Nie L Y, Huang W R and Zhang Z H 2018 Carbon 126 93
[14] Melle-Franco M 2020 Nat. Nanotech. 15 8
[15] Wang W L, Yazyev O V, Meng S and Kaxiras E 2009 Phys. Rev. Lett. 102 157201
[16] Brotons-Gisbert M, Andres-Penares D, Suh J, Hidalgo F, Abargues R, Rodráguez-Cantó P J, Segura A, Cros A, Tobias G, Canadell E, Ordejon P, Wu J Q, Martinez-Pastor J P and Sánchez-Royo J F 2016 Nano Lett. 16 3221
[17] Uzengi O and Ciraci S 2017 Phys. Rev. B 95 125413
[18] Reddy K, Mudusu D and Lee S 2019 Carbon 152 954
[19] Zhang G X, Jin X Y, Li H Y, Wang L, Hu C J and Sun X M 2016 Sci. Chin. -Mater. 59 337
[20] Cai C Y and Chen J H 2018 Chin. Phys. B 27 067304
[21] Kheyri A and Nourbakhsh Z 2016 Chin. Phys. B 25 093102
[22] Zhou Y G, Zu X T, Gao F, Lv H F and Xiao H Y 2009 Appl. Phys. Lett. 95 123119
[23] Milowska K Z and Majewski J A 2014 J. Phys. Chem. C 118 17395
[24] Giovanni M, Poh H L, Ambrosi A, Zhao G, Sofer Z, Sanek F, Khezri B, Webster R D and Pumera M 2012 Nanoscale 4 5002
[25] Cho B, Yoon J, Hahm M G, Kim D H, Kim A R, Kahng Y H, Park S W, Lee Y J, Park S G, Kwon J D, Kim C S, Song M, Jeong Y, Nam K S and Ko H C 2014 J. Mater. Chem. C 2 5280
[26] Batzill M 2012 Surf. Sci. Rep. 67 83
[27] Voloshina E and Dedkov Y 2012 Phys. Chem. Chem. Phys. 14 13502
[28] Muhammad R, Yong S, He P T and Muhammad H 2017 Appl. Surf. Sci. 399 20
[29] Santos E J G, Ayuela A, Fagan S B, Mendes F J, Azevedo D L, Souza F A G and Sánchez-Portal D 2008 Phys. Rev. B 78 195420
[30] Wu M, Cao C and Jiang J Z 2010 New J. Phys. 12 063020
[31] Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykk? P and Nieminen R M 2009 Phys. Rev. Lett. 102 126807
[32] Santos E J G, Sánchez-Portal D and Ayuela A 2010 Phys. Rev. B 81 125433
[33] Gao Z Y, Xu S P, Li L L, Yan G, Yang W J, Wu C C and Gates I D 2020 Appl. Surf. Sci. 516 146037
[34] Shi L J, Yang L Z, Deng J Q, Tong L H, Wu Q L, Zhang L, Zhang L J, Yin L J and Qin Z H 2020 Carbon 165 169
[35] Lee C, Wei X, Kysar J W and Hone J 2012 Science 321 385
[36] Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y F, Rasteli A and Schmidt O G 2010 Nano Lett. 10 3453
[37] Ferralis N, Maboudian R and Carraro C 2008 Phys. Rev. Lett. 101 156801
[38] Yoon D, Son Y and Cheong H 2011 Nano Lett. 11 3227
[39] Torchio R, Kvashnin Y O, Pascarelli S, Mathon O, Marini C and Genovese L 2011 Phys. Rev. Lett. 107 237202
[40] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G and Gao H J 2009 Chin. Phys. B 18 3008
[41] Si M S, Li J Y, Xue D S and Zhang G P 2013 Phys. Rev. B 88 144425
[42] Liu J, Zhang Y M, Li C, Jin W, Lefkidis G and Hübner W 2020 Phys. Rev. B 102 024416
[43] Lefkidis G, Zhang G P and Hübner W 2009 Phys. Rev. Lett. 103 217401
[44] Li C, Jin W, Lefkidis G and Hübner W 2011 Phys. Rev. B 84 054415
[45] Lefkidis G and Hübner W 2007 Phys. Rev. B 76 014418
[46] Li C, Zhang S B, Jin W, Lefkidis G and Hübner W 2014 Phys. Rev. B 89 184404
[47] Li C, Zhang S B, Jin W, Lefkidis G and Hübner W 2013 IEEE Trans. Magn. 49 3195
[48] Lefkidis G, Jin W, Liu J, Dutta D and Hübner W 2020 J. Phys. Chem. Lett. 11 2592
[49] Li C, Zhang S B, Jin W, Lefkidis G and Hübner W 2012 Acta Phys. Sin. 61 177502 (in Chinese)
[50] Li C, Yang F, Lefkidis G and Hübner W 2011 Acta Phys. Sin. 60 017802 (in Chinese)
[51] Li C, Liu J, Zhang S B, Lefkidis G and Hübner W 2015 Carbon 87 153
[52] Zhang N, Du H, Chang J, Jin W, Li C, Lefkidis G and Hübner W 2018 Phys. Rev. B 98 104431
[53] Li C, Liu J, Lefkidis G and Hübner W 2017 Phys. Chem. Chem. Phys. 19 673
[54] Huang R, Li C, Jin W, Lefkidis G and Hübner W 2019 Acta Phys. Sin. 68 023101 (in Chinese)
[55] Liu J, Li C, Jin W, Lefkidis G and Hübner W 2021 Phys. Rev. Lett. 126 037402
[56] Li C, Zhang S, Jin W, Xiang H P, Lefkidis G and Hübner W 2012 J. Magn. Magn. Mater. 324 4024
[57] Jin W, Rupp F, Chevalier K, Wolf M M N, Rojas M C, Lefkidis G, Krüger H J, Diller R and Hübner W 2012 Phys. Rev. Lett. 109 267209
[58] Nakatsuji H 1979 Chem. Phys. Lett. 67 329
[59] Hartenstein T, Li C, Lefkidis G and Hübner W 2008 J. Phys. D: Appl. Phys. 41 164006
[60] Chaudhuri D, Lefkidis G and Hübner W 2017 Phys. Rev. B 96 184413
[61] Wei Z, Feng Y and Ma J 2020 J. Energy Chem. 48 322
[62] Li X F, Li Q K, Cheng J, Liu L, Yan Q, Wu Y, Zhang X H, Wang Z Y, Qin Q and Luo Y 2016 J. Am. Chem. Soc. 138 8706
[63] Hu S, Chen X, Li Q, Li F, Fan Z, Wang Z, Wang Y, Zhang B and Wu G 2017 Appl. Catal. B Environ. 201 58
[64] Santos E J G, Ayuela A and Sánchez-Portal D 2010 New J. Phys. 12 053012
[65] Senapati L, Nayak S K, Rao B K and Jena P 2003 J. Chem. Phys. 118 8671
[66] Kandalam A K, Kiran B, Jena P, Li X, Grubisic A and Bowen K H 2007 J. Chem. Phys. 126 084306
[67] Kandalam A K, Jena P, Li X, Eustis S N and Bowen K H 2008 J. Chem. Phys. 129 134308
[68] Li C, Jin W, Xiang H P Lefkidis G and Hübner W 2011 Phys. Rev. B 84 054415
[69] Xiang H P, Lefkidis G and Hübner W 2012 Phys. Rev. B 86 134402
[70] Lefkidis G and Hübner W 2006 Phys. Rev. B 74 155106
[71] Habib A, Riaz S, Ahmad I, Iqbal D N and Kamal S 2021 J. Saudi Chem. Soc. 25 101178
[72] Drera G, Cepek C, Patera L L, Bondino F, Magnano E, Nappini S, Africh C, Lodi-Rizzini A, Joshi N, Ghosh P, Barla A, Mahatha S K, Pagliara S, Giampietri A, Pintossi C and Sangaletti L 2017 Phys. Rev. B 96 165442
[73] Germán E, Simonettia S, Pronsato E, Juan A and Brizuela G 2008 Appl. Surf. Sci. 254 5831
[74] Hayriyan L A, Mkrtchyan A F, Moskalenko M A, Maleev V I, Gugkaeva Z T, Ilyin M M, Babievsky K K, Dorovatovskii P V, Khrustalev V N, Peregudov A S and Belokon Y N 2018 Mendeleev Commun. 28 464
[1] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[2] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[3] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[4] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[5] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[6] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[7] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[8] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[9] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[10] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[11] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[12] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[13] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[14] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[15] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
No Suggested Reading articles found!