Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣)1, Jing Liu(刘景)2, Chun Li(李春)1,3,†, Wei Jin(金蔚)4, Georgios Lefkidis2,1, and Wolfgang Hübner2
1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China; 2 Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, P. O. Box 3049, 67653 Kaiserslautern, Germany; 3 Department of Mechanical Engineering, University of Manitoba, Winnipeg MB R3T 5V6, Canada; 4 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
Abstract We perform first-principles calculations and coherent laser-matter interaction analyses to investigate the laser-induced ultrafast spin flip on graphene nanoflakes (GNFs) with transition metal elements attached on the boundary [TM&GNFs (TM=Fe, Co, Ni)]. It is shown that the spin-flip process on TM&GNFs is highly influenced by the involved element species and the position attached to the nanoflakes. Furthermore, taking Ni&GNF as an example, the first-principles tensile test predicts that the variation of the C-Ni bond length plays an important role in the spin density distribution, especially for the low-lying magnetic states, and can therefore dominate the spin-flip processes. The fastest spin-flip scenario is achieved within 80 fs in a Ni&GNF structure under 10% tensile strain along the C-Ni bond. The local deformation modulation of spin flip provides the precursory guidance for further study of ultrafast magnetization control in GNFs, which could lead to potential applications in future integrated straintronic devices.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11872309, 12172293, and 11504223), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2020JM-120), and the Program of China Scholarships Council (Grant No. 201906295029).
Corresponding Authors:
Chun Li
E-mail: lichun@nwpu.edu.cn
Cite this article:
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms 2021 Chin. Phys. B 30 097702
[1] Stampfer C, Schurtenberger E, Molitor F, Güttinger J, Ihn T and Ensslin K 2008 Nano Lett.8 2378 [2] Sun J Z, Zhang L and Gao F 2016 Chin. Phys. B25 108701 [3] Wang X F, Zhao H M, Yang Y and Ren T L 2017 Chin. Phys. B26 038501 [4] Chen X Y, Tian Z, Li Q, Li S X, Zhang X Q, Ouyang C M, Gu J Q, Han J G and Zhang W L 2020 Chin. Phys. B29 077803 [5] Kuc A and Heine T 2010 Phys. Rev. B81 085430 [6] Gao Y and Okada S 2020 Carbon157 33 [7] Yang S, Lohe M R, Müllen K and Feng X 2016 Adv. Mater.28 6213 [8] Mukherjee M D, Dhand C, Dwivedi N, Singh B P, Sumana G, Agarwal V V, Tawale J S and Malhotra B D 2014 Sensor. Actuat. B-Chem.210 281 [9] Van O J, Akhmerov A R, Beenakker C W J and Wimmer M 2011 Phys. Rev. B84 1 [10] Enoki T, Fujii S and Takai K 2011 Carbon50 3141 [11] Pavliček N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J and Gross L 2017 Nat. Nanotech.12 308 [12] Li J, Sanz S, Castro-Esteban J, Vilas-Varela M, Freferiksen T and Pe? na D 2020 Phys. Rev. Lett.124 177201 [13] Hu R, Fan Z Q, Fu C H, Nie L Y, Huang W R and Zhang Z H 2018 Carbon126 93 [14] Melle-Franco M 2020 Nat. Nanotech.15 8 [15] Wang W L, Yazyev O V, Meng S and Kaxiras E 2009 Phys. Rev. Lett.102 157201 [16] Brotons-Gisbert M, Andres-Penares D, Suh J, Hidalgo F, Abargues R, Rodráguez-Cantó P J, Segura A, Cros A, Tobias G, Canadell E, Ordejon P, Wu J Q, Martinez-Pastor J P and Sánchez-Royo J F 2016 Nano Lett.16 3221 [17] Uzengi O and Ciraci S 2017 Phys. Rev. B95 125413 [18] Reddy K, Mudusu D and Lee S 2019 Carbon152 954 [19] Zhang G X, Jin X Y, Li H Y, Wang L, Hu C J and Sun X M 2016 Sci. Chin. -Mater.59 337 [20] Cai C Y and Chen J H 2018 Chin. Phys. B27 067304 [21] Kheyri A and Nourbakhsh Z 2016 Chin. Phys. B25 093102 [22] Zhou Y G, Zu X T, Gao F, Lv H F and Xiao H Y 2009 Appl. Phys. Lett.95 123119 [23] Milowska K Z and Majewski J A 2014 J. Phys. Chem. C118 17395 [24] Giovanni M, Poh H L, Ambrosi A, Zhao G, Sofer Z, Sanek F, Khezri B, Webster R D and Pumera M 2012 Nanoscale4 5002 [25] Cho B, Yoon J, Hahm M G, Kim D H, Kim A R, Kahng Y H, Park S W, Lee Y J, Park S G, Kwon J D, Kim C S, Song M, Jeong Y, Nam K S and Ko H C 2014 J. Mater. Chem. C2 5280 [26] Batzill M 2012 Surf. Sci. Rep.67 83 [27] Voloshina E and Dedkov Y 2012 Phys. Chem. Chem. Phys.14 13502 [28] Muhammad R, Yong S, He P T and Muhammad H 2017 Appl. Surf. Sci.399 20 [29] Santos E J G, Ayuela A, Fagan S B, Mendes F J, Azevedo D L, Souza F A G and Sánchez-Portal D 2008 Phys. Rev. B78 195420 [30] Wu M, Cao C and Jiang J Z 2010 New J. Phys.12 063020 [31] Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykk? P and Nieminen R M 2009 Phys. Rev. Lett.102 126807 [32] Santos E J G, Sánchez-Portal D and Ayuela A 2010 Phys. Rev. B81 125433 [33] Gao Z Y, Xu S P, Li L L, Yan G, Yang W J, Wu C C and Gates I D 2020 Appl. Surf. Sci.516 146037 [34] Shi L J, Yang L Z, Deng J Q, Tong L H, Wu Q L, Zhang L, Zhang L J, Yin L J and Qin Z H 2020 Carbon165 169 [35] Lee C, Wei X, Kysar J W and Hone J 2012 Science321 385 [36] Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y F, Rasteli A and Schmidt O G 2010 Nano Lett.10 3453 [37] Ferralis N, Maboudian R and Carraro C 2008 Phys. Rev. Lett.101 156801 [38] Yoon D, Son Y and Cheong H 2011 Nano Lett.11 3227 [39] Torchio R, Kvashnin Y O, Pascarelli S, Mathon O, Marini C and Genovese L 2011 Phys. Rev. Lett.107 237202 [40] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G and Gao H J 2009 Chin. Phys. B18 3008 [41] Si M S, Li J Y, Xue D S and Zhang G P 2013 Phys. Rev. B88 144425 [42] Liu J, Zhang Y M, Li C, Jin W, Lefkidis G and Hübner W 2020 Phys. Rev. B102 024416 [43] Lefkidis G, Zhang G P and Hübner W 2009 Phys. Rev. Lett.103 217401 [44] Li C, Jin W, Lefkidis G and Hübner W 2011 Phys. Rev. B84 054415 [45] Lefkidis G and Hübner W 2007 Phys. Rev. B76 014418 [46] Li C, Zhang S B, Jin W, Lefkidis G and Hübner W 2014 Phys. Rev. B89 184404 [47] Li C, Zhang S B, Jin W, Lefkidis G and Hübner W 2013 IEEE Trans. Magn.49 3195 [48] Lefkidis G, Jin W, Liu J, Dutta D and Hübner W 2020 J. Phys. Chem. Lett.11 2592 [49] Li C, Zhang S B, Jin W, Lefkidis G and Hübner W 2012 Acta Phys. Sin.61 177502 (in Chinese) [50] Li C, Yang F, Lefkidis G and Hübner W 2011 Acta Phys. Sin.60 017802 (in Chinese) [51] Li C, Liu J, Zhang S B, Lefkidis G and Hübner W 2015 Carbon87 153 [52] Zhang N, Du H, Chang J, Jin W, Li C, Lefkidis G and Hübner W 2018 Phys. Rev. B98 104431 [53] Li C, Liu J, Lefkidis G and Hübner W 2017 Phys. Chem. Chem. Phys.19 673 [54] Huang R, Li C, Jin W, Lefkidis G and Hübner W 2019 Acta Phys. Sin.68 023101 (in Chinese) [55] Liu J, Li C, Jin W, Lefkidis G and Hübner W 2021 Phys. Rev. Lett.126 037402 [56] Li C, Zhang S, Jin W, Xiang H P, Lefkidis G and Hübner W 2012 J. Magn. Magn. Mater.324 4024 [57] Jin W, Rupp F, Chevalier K, Wolf M M N, Rojas M C, Lefkidis G, Krüger H J, Diller R and Hübner W 2012 Phys. Rev. Lett.109 267209 [58] Nakatsuji H 1979 Chem. Phys. Lett.67 329 [59] Hartenstein T, Li C, Lefkidis G and Hübner W 2008 J. Phys. D: Appl. Phys.41 164006 [60] Chaudhuri D, Lefkidis G and Hübner W 2017 Phys. Rev. B96 184413 [61] Wei Z, Feng Y and Ma J 2020 J. Energy Chem.48 322 [62] Li X F, Li Q K, Cheng J, Liu L, Yan Q, Wu Y, Zhang X H, Wang Z Y, Qin Q and Luo Y 2016 J. Am. Chem. Soc.138 8706 [63] Hu S, Chen X, Li Q, Li F, Fan Z, Wang Z, Wang Y, Zhang B and Wu G 2017 Appl. Catal. B Environ.201 58 [64] Santos E J G, Ayuela A and Sánchez-Portal D 2010 New J. Phys.12 053012 [65] Senapati L, Nayak S K, Rao B K and Jena P 2003 J. Chem. Phys.118 8671 [66] Kandalam A K, Kiran B, Jena P, Li X, Grubisic A and Bowen K H 2007 J. Chem. Phys.126 084306 [67] Kandalam A K, Jena P, Li X, Eustis S N and Bowen K H 2008 J. Chem. Phys.129 134308 [68] Li C, Jin W, Xiang H P Lefkidis G and Hübner W 2011 Phys. Rev. B84 054415 [69] Xiang H P, Lefkidis G and Hübner W 2012 Phys. Rev. B86 134402 [70] Lefkidis G and Hübner W 2006 Phys. Rev. B74 155106 [71] Habib A, Riaz S, Ahmad I, Iqbal D N and Kamal S 2021 J. Saudi Chem. Soc.25 101178 [72] Drera G, Cepek C, Patera L L, Bondino F, Magnano E, Nappini S, Africh C, Lodi-Rizzini A, Joshi N, Ghosh P, Barla A, Mahatha S K, Pagliara S, Giampietri A, Pintossi C and Sangaletti L 2017 Phys. Rev. B96 165442 [73] Germán E, Simonettia S, Pronsato E, Juan A and Brizuela G 2008 Appl. Surf. Sci.254 5831 [74] Hayriyan L A, Mkrtchyan A F, Moskalenko M A, Maleev V I, Gugkaeva Z T, Ilyin M M, Babievsky K K, Dorovatovskii P V, Khrustalev V N, Peregudov A S and Belokon Y N 2018 Mendeleev Commun.28 464
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.