Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117401    DOI: 10.1088/1674-1056/24/11/117401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, elastic, and electronic properties of recently discovered ternary silicide superconductor Li2IrSi3: An ab-initio study

M. A. Hadia, M. A. Alamb, M. Roknuzzamanc, M. T. Nasira, A. K. M. A. Islama d, S. H. Naqiba
a Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh;
b Department of Physics, Rajshahi University of Engineering and Technology, Rajshahi-6204, Bangladesh;
c Department of Physics, Jessore University of Science and Technology, Jessore-7408, Bangladesh;
d International Islamic University Chittagong, 154/A College road, Chittagong, Bangladesh
Abstract  The structural, elastic, and electronic properties of the very recently discovered ternary silicide superconductor, Li2IrSi3, are calculated using an ab-initio technique. We adopt the plane-wave pseudopotential approach within the framework of the first-principles density functional theory (DFT) implemented by the CASTEP code. The calculated structural parameters show reasonable agreement with the experimental results. The elastic moduli of this interesting material are calculated for the first time. The electronic band structure and electronic energy density of states indicate the strong covalent Ir-Si and Si-Si bonding, which leads to the formation of the rigid structure of Li2IrSi3. Strong covalency gives rise to a high Debye temperature in this system. We discuss the theoretical results in detail in this paper.
Keywords:  silicide superconductor      crystal structure      elastic properties      electronic structures  
Received:  26 May 2015      Revised:  08 July 2015      Accepted manuscript online: 
PACS:  74.10.+v (Occurrence, potential candidates)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  62.20.de (Elastic moduli)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Corresponding Authors:  S. H. Naqib     E-mail:  salehnaqib@yahoo.com

Cite this article: 

M. A. Hadi, M. A. Alam, M. Roknuzzaman, M. T. Nasir, A. K. M. A. Islam, S. H. Naqib Structural, elastic, and electronic properties of recently discovered ternary silicide superconductor Li2IrSi3: An ab-initio study 2015 Chin. Phys. B 24 117401

[1] Hardy G F and Hulm J K;1953 Phys. Rev. 89 884
[2] Hirai D, Kawakami R, Magdysyuk O, Dinnebier R E, Yaresko A and Takagi H;2014 J. Phys. Soc. Jpn. 83 103703
[3] Pyon S, Kudo K, Matsumura J, Ishii H, Matsuo G, Nohara M, Hojo H, Oka K, Azuma M, Garlea V O, Kodama K and Shamoto S;2014 J. Phys. Soc. Jpn. 83 093706
[4] Phillips F C 1971 An Introduction to Crystallography (4th edn.) (New York: John Wiley & Sons) pp. 89-90
[5] Clark S J, Segall M D, Pickard C J, Hasnip P J and Probert M I J Zeitschrift für Kristallographie 220 567
[6] Hohenberg P and Kohn W;1964 Phys. Rev. 136 864
[7] Kohn W and Sham L J;1965 Phys. Rev. 140 1133
[8] Perdew J P, Burke K and Ernzerhof M;1996 Phys. Rev. Lett. 77 3865
[9] Vanderbilt D;1990 Phys. Rev. B 41 7892
[10] Fischer T H and Almlof J;1992 J. Phys. Chem. 96 9768
[11] Monkhorst H J and Pack J D;1976 Phys. Rev. B 13 5188
[12] Murnaghan F D 1951 Finite Deformation of an Elastic Solid (New York: Wiley & Sons)
[13] Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Taubner Press)
[14] Reuss A and Angew Z;1929 Math. Mech. 9 49
[15] Hill R;1952 Proc. Phys. Soc. A 65 349
[16] Anderson O L;1963 J. Phys. Chem. Solids 24 909
[17] Sun Z, Ahuja R, Li S and Schneider M;2003 Appl. Phys. Lett. 83 899
[18] Khazaei M, Arai M, Sasaki T, Estili M and Sakka Y;2014 Sci. Technol. Adv. Mater. 15 014208
[19] Born M;1940 Math. Proc. Camb. Philos. Soc. 36 160
[20] Romero M and Escamilla R;2012 Comp. Mater. Sci. 55 142
[21] Pugh S F;1954 Philos. Mag. 45 823
[22] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Naukova Dumka, Kiev) pp. 60-180
[23] Vitos L, Korzhavyi P A and Johansson B;2003 Nat. Mater. 2 25
[24] Mattesini M, Ahuja R and Johansson B;2003 Phys. Rev. B 68 184108
[25] Lu H Y, Yang N N, Geng L, Chen S, Yang Y, Lu W J, Wang W S and Sun J;2015 Europhys. Lett. 110 17003
[1] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[2] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[3] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[4] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[5] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[6] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[7] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[8] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[9] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[10] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[11] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[12] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[13] Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds
Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚). Chin. Phys. B, 2021, 30(7): 076106.
[14] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[15] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
No Suggested Reading articles found!