Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107505    DOI: 10.1088/1674-1056/24/10/107505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic–optical bifunctional  CoPt3/Co multilayered nanowire arrays

Su Yi-Kun (苏轶坤)a, Yan Zhi-Long (闫志龙)a, Wu Xi-Ming (吴喜明)a, Liu Huan (刘欢)a, Ren Xiao (任肖)b, Yang Hai-Tao (杨海涛)b
a College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies.

Keywords:  heterostructures      nanowires      magnetic properties      optic properties  
Received:  17 June 2015      Revised:  13 July 2015      Accepted manuscript online: 
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  61.46.-w (Structure of nanoscale materials)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).

Corresponding Authors:  Yang Hai-Tao     E-mail:  htyang@iphy.ac.cn

Cite this article: 

Su Yi-Kun (苏轶坤), Yan Zhi-Long (闫志龙), Wu Xi-Ming (吴喜明), Liu Huan (刘欢), Ren Xiao (任肖), Yang Hai-Tao (杨海涛) Magnetic–optical bifunctional  CoPt3/Co multilayered nanowire arrays 2015 Chin. Phys. B 24 107505

[1] Liu L F, Zhou W Y, Xie S S, Albrecht O and Nielsch K 2008 Chem. Phys. Lett. 466 165
[2] Li Y Q, Li L L and Cai J 2012 IEEE Trans. Magn. 48 4398
[3] Qi K, Li X H, Zhang H, Wang L, Xue D S, Zhang H L, Zhou B F, Mellors N J and Peng Y 2012 Nanotechnology 23 505707
[4] Su Y K, Qin D H, Zhang H L, Li H and Li H L 2004 Chem. Phys. Lett. 388 406
[5] Fedorov F S, Monch I, Mickel C, Tschulik K, Zhao B, Uhlemann M, Gebert A and Eckert J 2013 J. Electrochem. Soc. 160 D13
[6] Elawayeb M, Peng Y, Briston K J and Inkson B J 2012 J. Appl. Phys. 111 034306
[7] Lee J H, Wu J H, Liu H L, Cho J U, Cho M K, An B H, Min J H, Noh S J and Kim Y K 2007 Angew. Chem. Int. Ed. 46 3663
[8] Gao W, Manesh K M, Hua J, Sattayasamitsathit S and Wang J 2011 Small 7 2047
[9] Choi J R, Oh S J, Ju H Y and Cheon J W 2005 Nano Lett. 5 2179
[10] Valizadeh S, Hultman L, George J M and Leisner P 2002 Adv. Funct. Mater. 12 766
[11] Yao H J, Mo D, Duan J L, Chen Y F, Zhang L, Liu J, Hou M D and Sun Y M 2008 Acta Phys. Chim. Sin. 24 1922
[12] Pan H, Chen W Z, Feng Y P, Ji W and Li J Y 2006 Appl. Phys. Lett. 88 223106
[13] Ogata Y, Tuan N A, Miyauchi Y and Mizutani G 2011 J. Appl. Phys. 110 044301
[14] Reich D H, Tanase M, Hultgen A, Bauer L A, Chen C S and Meyer G J 2003 Appl. Phys. 93 7275
[15] Mrabet S E, Abad M D and Cartes C L 2009 D. Martínez-Martínez and J.C. Sánchez-López6 S444
[16] You J B, Zhang X W, Dong J J, Song X M, Yin Z G, Chen N F and Yan H 2009 Nanoscale Res. Lett. 4 1121
[17] Langhammer C, Yuan Z, Zoric I and Kasemo B 2006 Nano Lett. 4 833
[18] Florian C, Cignani R, Niessen D and Santarelli Alberto 2012 IEEE Microwave and Wireless Components Letters 22471
[19] Payne E K, Shuford K L, Park S, Schatz G C and Mirkin C A 2006 J. Phys. Chem. B 110 2150
[20] Sellmyer D J, Zheng M and Skomski R 2001 J. Phys.: Condens. Matter 13 R433
[21] Choi J R, Oh S J, Ju H and Cheon J 2005 Nano Lett. 5 2179
[1] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[2] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[3] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[4] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[5] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[6] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[7] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[8] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[11] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[12] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[13] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[14] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[15] Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures
Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2021, 30(9): 097601.
No Suggested Reading articles found!