CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Lumped-equivalent circuit model for multi-stage cascaded magnetoelectric dual-tunable bandpass filter |
Zhang Qiu-Shi (张秋实), Zhu Feng-Jie (朱锋杰), Zhou Hao-Miao (周浩淼) |
College of Information Engineering, China Jiliang University, Hangzhou 310018, China |
|
|
Abstract A lumped-equivalent circuit model of a novel magnetoelectric tunable bandpass filter, which is realized in the form of multi-stage cascading between a plurality of magnetoelectric laminates, is established in this paper for convenient analysis. The multi-stage cascaded filter is degraded to the coupling microstrip filter with only one magnetoelectric laminate and then compared with the existing experiment results. The comparison reveals that the insertion loss curves predicted by the degraded circuit model are in good agreement with the experiment results and the predicted results of the electromagnetic field simulation, thus the validity of the model is verified. The model is then degraded to the two-stage cascaded magnetoelectric filter with two magnetoelectric laminates. It is revealed that if the applied external bias magnetic or electric fields on the two magnetoelectric laminates are identical, then the passband of the filter will drift under the changed external field; that is to say, the filter has the characteristics of external magnetic field tunability and electric field tunability. If the applied external bias magnetic or electric fields on two magnetoelectric laminates are different, then the passband will disappear so that the switching characteristic is achieved. When the same magnetic fields are applied to the laminates, the passband bandwidth of the two-stage cascaded magnetoelectric filter with two magnetoelectric laminates becomes nearly doubled in comparison with the passband filter which contains only one magnetoelectric laminate. The bandpass effect is also improved obviously. This research will provide a theoretical basis for the design, preparation, and application of a new high performance magnetoelectric tunable microwave device.
|
Received: 04 February 2015
Revised: 30 May 2015
Accepted manuscript online:
|
PACS:
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
84.40.Dc
|
(Microwave circuits)
|
|
85.80.Jm
|
(Magnetoelectric devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172285 and 11472259) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR13A020002). |
Corresponding Authors:
Zhou Hao-Miao
E-mail: zhouhm@cjlu.edu.cn
|
Cite this article:
Zhang Qiu-Shi (张秋实), Zhu Feng-Jie (朱锋杰), Zhou Hao-Miao (周浩淼) Lumped-equivalent circuit model for multi-stage cascaded magnetoelectric dual-tunable bandpass filter 2015 Chin. Phys. B 24 107506
|
[1] |
Nan C W, Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
|
[2] |
Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
|
[3] |
Ma J, Hu J M, Li Z and Nan C W 2011 Adv. Mater. 23 1062
|
[4] |
Yu G L, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q and Zhang H W 2013 Chin. Phys. B 22 077504
|
[5] |
Shi Y and Gao Y W 2014 J. Magn. Magn. Mater. 360 131
|
[6] |
Shi Y, Niu L F and Gao Y W 2014 J. Appl. Phys. 116 024101
|
[7] |
Zhou H M and Cui X L 2014 J. Appl. Phys. 115 083905
|
[8] |
Shi Z, Chen L Z, Tong Y S, Zheng Z B, Yang S Y, Wang C P and Liu X J 2013 Acta Phys. Sin. 62 017501 (in Chinese)
|
[9] |
Lu C J, Li P, Wen Y M, Yang A C, Yang C, Wang D C, He W and Zhang J T 2014 Chin. Phys. B 23 117503
|
[10] |
Fetisov Y K, Burdin D A, Chashin D V and Ekonomov N A 2014 IEEE Sensors Journal 14 2252
|
[11] |
Bai X L, Wen Y M, Yang J, Li P, Qiu J and Zhu Y 2012 J. Appl. Phys. 111 07A938
|
[12] |
Zhou Y, Apo D J and Priya S 2013 Appl. Phys. Lett. 103 192909
|
[13] |
Yu X J, Wu T Y and Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese)
|
[14] |
Jia Y M, Or S W, Chan H L W, Jiao J, Luo H S and Zwaag S V D 2009 Appl. Phys. Lett. 94 263504
|
[15] |
Zhang S Y, Leung C M, Kuang W, Or S W and Ho S L 2013 J. Appl. Phys. 113 17C733
|
[16] |
Zheng H and Yang C T 2010 Acta Phys. Sin. 59 5055 (in Chinese)
|
[17] |
Subramanyam G, Cole M W, Sun N X, Kalkur T S, Sbrockey N M, Tompa G S, Guo X M, Chen C L, Alpay S P, Rossetti G A Jr, Dayal K, Chen L Q and Schlom D G 2013 J. Appl. Phys. 114 191301
|
[18] |
Tatarenko A S and Bichurin M I 2012 Adv. Condens. Matter Phys. 2012 286562
|
[19] |
Hill N A 2000 J. Phys. Chem. B 104 6694
|
[20] |
Bichurin M I, Kornev I A, Petrov V M, Tatarenko A S and Kiliba Yu V T 2001 Phys. Rev. B 64 094409
|
[21] |
Bichurin M I, Petrov V M, Kiliba Y V and Srinivasan G 2002 Phys. Rev. B 66 134404
|
[22] |
Pettiford C, Dasgupta S, Lou J, Yoon S D and Sun N X 2007 IEEE Trans. Magn. 43 3343
|
[23] |
Castel V and Brosseau C 2008 Appl. Phys. Lett. 92 233110
|
[24] |
Castel V, Brosseau C and Ben Youssef J 2009 J. Appl. Phys. 106 064312
|
[25] |
Bichurin M I, Petrov V M and Galkina T A 2009 Eur. Phys. J. Appl. Phys. 45 30801
|
[26] |
Lou J, Reed D, Liu M, Pettiford C and Sun N X 2009 Microwave Symposium Digest (MTT), IEEE MTT-S International, June 7-12, Boston, USA, p. 33
|
[27] |
Brosseau C, Castel V and Potel M 2010 J. Appl. Phys. 108 024306
|
[28] |
Lutsev L, Yakovlev S, Castel V and Brosseau C 2010 J. Phys. D: Appl. Phys. 43 325302
|
[29] |
Tatarenko A S, Ustinov A B, Srinivasan G, Petrov V M and Bichurin M I 2010 J. Appl. Phys. 108 063923
|
[30] |
Li S D, Liu M, Shao W Q, Xu J, Chen S O, Zhou Z Y, Nan T X, Sun N X and Duh J G 2013 J. Appl. Phys. 113 17C727
|
[31] |
Li S D, Du H, Xue Q, Gao X, Zhang Y, Shao W, Nan T, Zhou Z and Sun N X 2014 J. Appl. Phys. 115 17C723
|
[32] |
Srinivasan G, Tatarenko A S and Bichurin M I 2005 Electron. Lett. 41 596
|
[33] |
Tatarenko A S, Gheevarughese V and Srinivasan G 2006 Electron. Lett. 42 540
|
[34] |
Tatarenko A S, Murthy D V B and Srinivasan G 2012 Microwave Opt. Technol. Lett. 54 1215
|
[35] |
Tatarenko A S and Srinivasan G 2011 Microwave Opt. Technol. Lett. 53 261
|
[36] |
Chen Y J, Daigle A, Fitchorov T, Hu B, Geiler M, Geiler A, Vittoria C and Harris V G 2011 Appl. Phys. Lett. 98 202502
|
[37] |
Yang G M, Lou J, Wu J, Liu M, Wen G, Jin Y and Sun N X 2011 in Microwave Symposium Digest (MTT) 2011 IEEE MTT-S International, June 5-10, Baltimore, USA, p. 1
|
[38] |
Yang G M and Obi O 2011 IEEE Trans. Magn. 47 3732
|
[39] |
Yang X, Wu J, Beguhn S, Zhou Z Y, Lou J and Sun N X 2012 Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, June 17-22, Montreal, QC, Canada, p. 1
|
[40] |
Yang X, Gao Y, Wu J, Beguhn S, Nan T X, Zhou Z Y, Liu M and Sun N X 2013 IEEE Trans. Magn. 49 5485
|
[41] |
Yang X, Wu J, Gao Y, Nan T X, Zhou Z Y, Beguhn S, Liu M and Sun N X 2013 IEEE Trans. Magn. 49 3882
|
[42] |
Yang X, Gao Y, Wu J, Zhou Z, Beguhn S, Nan T and Sun N X 2014 IEEE Microwave Wireless Co. 24 191
|
[43] |
Wu J, Yang X, Beguhn S, Lou J and Sun N X 2012 IEEE T Microwave Theory 60 3959
|
[44] |
Marcelli R, Rossi M and De Gasperis P 1996 IEEE Trans. Magn. 32 4156
|
[45] |
Tsai C S, Qiu G and Gao H 2005 IEEE Trans. Magn. 41 3568
|
[46] |
Zhou H M, Li C, Zhu F J and Qu S X 2013 J. Appl. Phys. 114 083902
|
[47] |
Zhou H M and Zhu F J 2013 J. Appl. Phys. 114 153904
|
[48] |
Zhou H M and Lian J 2014 J. Appl. Phys. 115 193908
|
[49] |
Zhou H M, Lian J and Zhu F J 2014 J. Appl. Phys. 116 063904
|
[50] |
Srinivasan G, Bichurin M I and Mantese J V 2005 Integr. Ferroelectr. 71 45
|
[51] |
Emtage P R 1978 J. Appl. Phys. 49 4475
|
[52] |
Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G and Sun N X 2009 Adv. Funct. Mater. 19 1826
|
[53] |
Kohmoto O 2003 J. Magn. Magn. Mater. 262 280
|
[54] |
Zhou H M, Chen Q and Deng J H 2014 Chin. Phys. B 23 047502
|
[55] |
Bartolucci G and Marcelli R 2000 J. Appl. Phys. 87 6905"
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|