Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 100306    DOI: 10.1088/1674-1056/24/10/100306
GENERAL Prev   Next  

Scheme for purifying a general mixed entangled state and its linear optical implementation

Dong Dong (董冬), Zhang Yan-Lei (张延磊), Zou Chang-Ling (邹长铃), Zou Xu-Bo (邹旭波), Guo Guang-Can (郭光灿)
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  

We propose a scheme for purification of a general mixed entangled state. In this scheme, we start from a large number of general mixed entangled states and end up, after local operation and classical communication, with a smaller number of Bell diagonal states with higher entanglement. In particular, the scheme can purify one maximally entangled state from two entangled pairs prepared in a class of mixed entangled state. Furthermore we propose a linear optical implementation of the present scheme with polarization beam splitters and photon detectors.

Keywords:  entanglement      purifying      optical implementation  
Received:  24 March 2015      Revised:  18 June 2015      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.-p (Quantum optics)  
Corresponding Authors:  Zou Xu-Bo     E-mail:  xbz@ustc.edu.cn

Cite this article: 

Dong Dong (董冬), Zhang Yan-Lei (张延磊), Zou Chang-Ling (邹长铃), Zou Xu-Bo (邹旭波), Guo Guang-Can (郭光灿) Scheme for purifying a general mixed entangled state and its linear optical implementation 2015 Chin. Phys. B 24 100306

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Bell J S 1964 Physics (Long Island City, N.Y.) 1 195
[3] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[4] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press)
[5] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[6] Ekert A K 1991 Phys. Rev. Lett. 67 661.
[7] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[8] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[9] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[10] Deutsch D, Ekert A K, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[11] Dehaene J, DenNest M V, DeMoor B and Verstraete F 2003 Phys. Rev. A 67 022310
[12] Dong P, Zhang G and Cao Z L 2010 Chin. Phys. Lett. 27 030301
[13] Zheng S B 2008 Chin. Phys. B 17 2969
[14] Isasi E and Mundarain D 2010 Phys. Rev. A 81 044303
[15] Czechlewski M, Grudka A, Ishizaka S and Wojcik A 2009 Phys. Rev. A 80 014303
[16] Xue P 2011 Chin. Phys. B 20 100310
[17] Mazhar A 2014 Chin. Phys. B 23 120307
[18] Sun L L, Wang H F, Zhang S and Yeon K H 2012 J. Korean Phys. Soc. 61 1938
[19] Kruszynska C, Miyake A, Briegel H J and Dur W 2006 Phys. Rev. A 74 052316
[20] Cheong Y W, Lee S W, Lee J and Lee H W 2007 Phys. Rev. A 76 042314
[21] Deng F G 2011 Phys. Rev. A 84 052312
[22] Glancy S and Knill E 2006 Phys. Rev. A 74 032319
[23] Miyake A and Briegel H J 2005 Phys. Rev. Lett. 95 220501
[24] Verstraete F, Dehaene J and DeMoor B 2001 Phys. Rev. A 64 010101
[25] Zwerger M, Briegel H J and Dur W 2013 Phys. Rev. Lett. 110 260503
[26] Zwerger M, Briegel H J and Dur W 2014 Phys. Rev. A 90 012314
[27] Jane E 2002 Quantum Inf. Comput. 2 348
[28] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[29] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[30] Jennewein T, Simon C, Weihs G, Weinfurter H and Zeilinger A 2000 Phys. Rev. Lett. 84 4729
[31] Sheng Y B, Zhou L, Cheng W W, Gong L Y, Zhao S M and Zheng B Y 2012 Chin. Phys. B 21 030307
[32] Gu B, Chen Y L, Zhang C Y and Huang Y G 2010 Chin. Phys. Lett. 27 100304
[33] Pan J W, Simon C, Brukner C and Zeilinger A 2001 Nature 410 1067
[34] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[35] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!