|
|
Non-Markovianity of a qubit coupled with an isotropic Lipkin-Meshkov-Glick bath |
Tian Li-Jun (田立君), Ti Min-Min (提敏敏), Zhai Xiang-Dong (翟向东) |
Department of Physics, Shanghai University, Shanghai 200444, China |
|
|
Abstract We study the non-Markovianity of the single qubit system coupled with an isotropic Lipkin-Meshkov-Glick (LMG) model by an effective method proposed by Breuer et al. (Breuer H P and Piilo J 2009 Europhys. Lett. 85 5004). It is discovered that the non-Markovianity is concerned with the quantum phase transitions (QPTs). In the open system, we present that the strong coupling inside the bath and the strong interaction between the system and bath can enhance the degree of non-Markovianity. Moreover, the non-Markovianity is stronger and more sensitive for the bath in the symmetric phase than the symmetry broken phase.
|
Received: 08 March 2015
Revised: 03 May 2015
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
75.10.Pq
|
(Spin chain models)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11075101). |
Corresponding Authors:
Tian Li-Jun
E-mail: tianlijun@staff.shu.edu.cn
|
Cite this article:
Tian Li-Jun (田立君), Ti Min-Min (提敏敏), Zhai Xiang-Dong (翟向东) Non-Markovianity of a qubit coupled with an isotropic Lipkin-Meshkov-Glick bath 2015 Chin. Phys. B 24 100305
|
[1] |
Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
|
[2] |
Gardiner C W and Zoller P 2004 Quantum Noise (Berlin: Springer-Verlag)
|
[3] |
Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
|
[4] |
Xiang J D, Qin L G and Tian L J 2014 Chin. Phys. B 23 110305
|
[5] |
Strunz W T, Diosi L and Gisin N 1999 Phys. Rev. Lett. 82 1801
|
[6] |
Budini A A 2000 Phys. Rev. A 63 012106
|
[7] |
Garraway B M 1997 Phys. Rev. A 55 2290
|
[8] |
Piilo J, Maniscalco S, Harkonen K and Suominen K A 2008 Phys. Rev. Lett. 100 180402
|
[9] |
Breuer H P and Piilo J 2009 Europhys. Lett. 85 50004
|
[10] |
Breuer H P and Vacchini B 2008 Phys. Rev. Lett. 101 140402
|
[11] |
Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
|
[12] |
Hamm P, Lim M and Hochstrasser R M 1998 Phys. Rev. Lett. 81 5326
|
[13] |
Dublin F, Rotter D, Mukherjee M, Russo C, Eschner J and Blatt R 2007 Phys. Rev. Lett. 98 183003
|
[14] |
Lai C W, Maletinsky P, Badolato A and Imamoglu A 2006 Phys. Rev. Lett. 96 167403
|
[15] |
Tang N, Xu T T and Zeng H S 2013 Chin. Phys. B 22 030304
|
[16] |
Ding B F, Wang X Y, Tang Y F, Mi X W and Zhou H P 2011 Chin. Phys. B 20 060304
|
[17] |
Zheng Y P, Tang N, Wang G Y and Zeng H S 2011 Chin. Phys. B 20 110301
|
[18] |
Zou H M, Fang M F and Yang B Y 2013 Chin. Phys. B 22 120303
|
[19] |
Fan Z L, Tian J and Zeng H S 2014 Chin. Phys. B 23 060303
|
[20] |
Luo S L, Fu S S and Song H T 2012 Phys. Rev. A 86 044101
|
[21] |
Gang J, Zou J and Shao B 2010 Phys. Rev. A 81 062124
|
[22] |
Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
|
[23] |
Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
|
[24] |
Apollaro T J G, DiFranco C, Plastina F and Paternostro M 2011 Phys. Rev. A 83 032103
|
[25] |
Lorenzo S, Plastina F and Paternostro M 2011 Phys. Rev. A 84 032124
|
[26] |
Rebentrost P and Aspuru G A 2011 J. Chem. Phys. 134 101103
|
[27] |
Haikka P, McEndoo S, DeChiara G, Palma G M and Maniscalco S 2011 Phys. Rev. A 84 031602
|
[28] |
Vahala K J 2003 Nature 424 839
|
[29] |
Buluta I and Nori F 2009 Science 326 108
|
[30] |
Lipkin H J, Meshkov N and Glick A J 1965 Nucl. Phys. 62 188
|
[31] |
Sachdev S 2000 Quantum Phase Transitions (Cambridge: Cambridge University Press)
|
[32] |
Qian X F, Shi T, Li Y, Song Z and Sun C P 2005 Phys. Rev. A 72 012333
|
[33] |
Haikka P, Goold J, McEndoo S, Plastina F and Maniscalo S 2012 Phys. Rev. A 85 060101
|
[34] |
Quan H T, Wang Z D and Sun C P 2007 Phys. Rev. A 76 012104
|
[35] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[36] |
Yuan X Z and Zhu K D 2005 Europhys. Lett. 69 868
|
[37] |
Xu Z Y, Yang W L and Feng M 2010 Phys. Rev. A 81 044105
|
[38] |
Yuan X Z and Zhu K D, Wu Z J 2005 Eur. Phys. J. D 33 129
|
[39] |
Ma X S, Wang A M, Yang X D and You H 2005 Phys. A 38 2761
|
[40] |
Hamdouni Y, Fannes M and Petruccione F 2006 Phys. Rev. B 73 245323
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|