Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 100305    DOI: 10.1088/1674-1056/24/10/100305
GENERAL Prev   Next  

Non-Markovianity of a qubit coupled with an isotropic Lipkin-Meshkov-Glick bath

Tian Li-Jun (田立君), Ti Min-Min (提敏敏), Zhai Xiang-Dong (翟向东)
Department of Physics, Shanghai University, Shanghai 200444, China
Abstract  We study the non-Markovianity of the single qubit system coupled with an isotropic Lipkin-Meshkov-Glick (LMG) model by an effective method proposed by Breuer et al. (Breuer H P and Piilo J 2009 Europhys. Lett. 85 5004). It is discovered that the non-Markovianity is concerned with the quantum phase transitions (QPTs). In the open system, we present that the strong coupling inside the bath and the strong interaction between the system and bath can enhance the degree of non-Markovianity. Moreover, the non-Markovianity is stronger and more sensitive for the bath in the symmetric phase than the symmetry broken phase.
Keywords:  non-Markovianity      qubit dynamics      LMG model  
Received:  08 March 2015      Revised:  03 May 2015      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.45.-a (Nonlinear dynamics and chaos)  
  75.10.Pq (Spin chain models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11075101).
Corresponding Authors:  Tian Li-Jun     E-mail:  tianlijun@staff.shu.edu.cn

Cite this article: 

Tian Li-Jun (田立君), Ti Min-Min (提敏敏), Zhai Xiang-Dong (翟向东) Non-Markovianity of a qubit coupled with an isotropic Lipkin-Meshkov-Glick bath 2015 Chin. Phys. B 24 100305

[1] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[2] Gardiner C W and Zoller P 2004 Quantum Noise (Berlin: Springer-Verlag)
[3] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[4] Xiang J D, Qin L G and Tian L J 2014 Chin. Phys. B 23 110305
[5] Strunz W T, Diosi L and Gisin N 1999 Phys. Rev. Lett. 82 1801
[6] Budini A A 2000 Phys. Rev. A 63 012106
[7] Garraway B M 1997 Phys. Rev. A 55 2290
[8] Piilo J, Maniscalco S, Harkonen K and Suominen K A 2008 Phys. Rev. Lett. 100 180402
[9] Breuer H P and Piilo J 2009 Europhys. Lett. 85 50004
[10] Breuer H P and Vacchini B 2008 Phys. Rev. Lett. 101 140402
[11] Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
[12] Hamm P, Lim M and Hochstrasser R M 1998 Phys. Rev. Lett. 81 5326
[13] Dublin F, Rotter D, Mukherjee M, Russo C, Eschner J and Blatt R 2007 Phys. Rev. Lett. 98 183003
[14] Lai C W, Maletinsky P, Badolato A and Imamoglu A 2006 Phys. Rev. Lett. 96 167403
[15] Tang N, Xu T T and Zeng H S 2013 Chin. Phys. B 22 030304
[16] Ding B F, Wang X Y, Tang Y F, Mi X W and Zhou H P 2011 Chin. Phys. B 20 060304
[17] Zheng Y P, Tang N, Wang G Y and Zeng H S 2011 Chin. Phys. B 20 110301
[18] Zou H M, Fang M F and Yang B Y 2013 Chin. Phys. B 22 120303
[19] Fan Z L, Tian J and Zeng H S 2014 Chin. Phys. B 23 060303
[20] Luo S L, Fu S S and Song H T 2012 Phys. Rev. A 86 044101
[21] Gang J, Zou J and Shao B 2010 Phys. Rev. A 81 062124
[22] Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[23] Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
[24] Apollaro T J G, DiFranco C, Plastina F and Paternostro M 2011 Phys. Rev. A 83 032103
[25] Lorenzo S, Plastina F and Paternostro M 2011 Phys. Rev. A 84 032124
[26] Rebentrost P and Aspuru G A 2011 J. Chem. Phys. 134 101103
[27] Haikka P, McEndoo S, DeChiara G, Palma G M and Maniscalco S 2011 Phys. Rev. A 84 031602
[28] Vahala K J 2003 Nature 424 839
[29] Buluta I and Nori F 2009 Science 326 108
[30] Lipkin H J, Meshkov N and Glick A J 1965 Nucl. Phys. 62 188
[31] Sachdev S 2000 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[32] Qian X F, Shi T, Li Y, Song Z and Sun C P 2005 Phys. Rev. A 72 012333
[33] Haikka P, Goold J, McEndoo S, Plastina F and Maniscalo S 2012 Phys. Rev. A 85 060101
[34] Quan H T, Wang Z D and Sun C P 2007 Phys. Rev. A 76 012104
[35] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[36] Yuan X Z and Zhu K D 2005 Europhys. Lett. 69 868
[37] Xu Z Y, Yang W L and Feng M 2010 Phys. Rev. A 81 044105
[38] Yuan X Z and Zhu K D, Wu Z J 2005 Eur. Phys. J. D 33 129
[39] Ma X S, Wang A M, Yang X D and You H 2005 Phys. A 38 2761
[40] Hamdouni Y, Fannes M and Petruccione F 2006 Phys. Rev. B 73 245323
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[3] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[4] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[5] Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁). Chin. Phys. B, 2018, 27(1): 010302.
[6] Quantum speed limits of a qubit system interacting with a nonequilibrium environment
Zhi He(贺志), Chun-Mei Yao(姚春梅), Li Li(李莉), Qiong Wang(王琼). Chin. Phys. B, 2016, 25(8): 080304.
[7] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
[8] Rotation of Bloch sphere induced by Lamb shift in open two-level systems
Wang Guo-You (王国友), Tang Ning (唐宁), Liu Ying (刘颖), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(5): 050302.
[9] Entanglement and non-Markovianity of a spin-S system in a dephasing environment
Fan Zi-Long (范子龙), Tian Jing (田晶), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2014, 23(6): 060303.
[10] Non-Markovianity of the Heisenberg XY spin environment with Dzyaloshinskii-Moriya interaction
Xiang Jun-Dong (项俊东), Qin Li-Guo (秦立国), Tian Li-Jun (田立君). Chin. Phys. B, 2014, 23(11): 110305.
[11] Comparison between non-Markovian dynamics with and without rotating wave approximation
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2013, 22(3): 030304.
[12] Distribution of non-Markovian intervals for open qubit systems
Zheng Yan-Ping(郑艳萍), Tang Ning(唐宁), Wang Guo-You(王国友), and Zeng Hao-Sheng(曾浩生) . Chin. Phys. B, 2011, 20(11): 110301.
No Suggested Reading articles found!