CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Shape-manipulated spin-wave eigenmodes of magnetic nanoelements |
Zhang Guang-Fu (张光富)a b, Li Zhi-Xiong (李志雄)a, Wang Xi-Guang (王希光)a, Nie Yao-Zhuang (聂耀庄)a, Guo Guang-Hua (郭光华)a |
a School of Physics and Electronics, Central South University, Changsha 410083, China; b School of Communication and Electronic Engineering, Hunan City University, Yiyang 413000, China |
|
|
Abstract The magnetization dynamics of nanoelements with tapered ends have been studied by micromagnetic simulations. Several spin-wave modes and their evolutions with the sharpness of the element ends are characterized. The edge mode localized in the two ends of the element can be effectively tuned by the element shape. Its frequency increases rapidly with the tapered parameter h and its localized area gradually expands toward the element center, and it finally merges into the fundamental mode at a critical tapered parameter h0. For nanoelements with h > h0, the edge mode is completely suppressed. The standing spin-wave modes mainly in the internal area of the element are less affected by the element shape. The shifts of their frequencies are small and they display different tendencies. The evolution of the spin-wave modes with the element shape is explained by considering the change of the internal field.
|
Received: 25 January 2015
Revised: 30 March 2015
Accepted manuscript online:
|
PACS:
|
75.40.Gb
|
(Dynamic properties?)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374373), the Doctoral Fund of Ministry of Education of China (Grant No. 20120162110020), the Natural Science Foundation of Hunan Province of China (Grant No. 13JJ2004), and the Science and Technology Planning of Yiyang City of Hunan Province of China (Grant No. 2014JZ54). |
Corresponding Authors:
Guo Guang-Hua
E-mail: guogh@mail.csu.edu.cn
|
Cite this article:
Zhang Guang-Fu (张光富), Li Zhi-Xiong (李志雄), Wang Xi-Guang (王希光), Nie Yao-Zhuang (聂耀庄), Guo Guang-Hua (郭光华) Shape-manipulated spin-wave eigenmodes of magnetic nanoelements 2015 Chin. Phys. B 24 097503
|
[1] |
Lavrijsen R, Lee J H, Pacheco A F, Petit D C M C, Mansell R and Cowburn R P 2013 Nature 493 647
|
[2] |
Chappert C, Fert A and van Dau F N 2007 Nat. Mater. 6 813
|
[3] |
Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
|
[4] |
Wang K L, Alzate J G and Amiri P K 2013 J. Phys. D 46 074003
|
[5] |
Lee S, Kim H, Yun D J, Rhee S W and Yong K J 2009 Appl. Phys. Lett. 95 262113
|
[6] |
Joo S J, Kim T, Shin S H, Lim J Y, Hong J, Song J D, Chang J, Lee H W, Rhie K, Han S H, Shin K H and Johnson M 2013 Nature 494 72
|
[7] |
Rückriem R, Krone P, Schrefl T and Albrecht M 2012 Appl. Phys. Lett. 100 242402
|
[8] |
Wang X G, Guo G H, Li Z X, Wang D W, Nie Y Z and Tang W 2015 Eur. Phys. Lett. 109 37008
|
[9] |
Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X and Tang W 2014 Phys. Rev. B 89 144418
|
[10] |
Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X and Tang W 2014 J. Appl. Phys. 116 023904
|
[11] |
Lin C S, Lim H S, Wang C C, Adeyeye A O, Wang Z K, Ng S C and Kuok M H 2010 J. Appl. Phys. 108 114305
|
[12] |
Giovannini L, Montoncello F, Zivieri R and Nizzoli F 2007 J. Phys.: Condens. Matter. 19 225008
|
[13] |
Lü D L and Xu C 2010 Chin. Phys. Lett. 27 097503
|
[14] |
Zhou H M, Chen Q and Deng J H 2014 Chin. Phys. B 23 047502
|
[15] |
Bayer C, Jorzick J, Hillebrands B, Demokritov S O, Kouba R, Bozinoski R, Slavin A N, Guslienko K Y, Berkov D V, Gorn N L and Kostylev M P 2005 Phys. Rev. B 72 064427
|
[16] |
Gubbiotti G, Carlotti G, Okuno T, Grimsditch M, Giovannini L, Montoncello F and Nizzoli F 2005 Phys. Rev. B 72 184419
|
[17] |
Rückriem R, Schref T and Albrecht M 2014 Appl. Phys. Lett. 104 052414
|
[18] |
Sproll M, Noske M, Bauer H, Kammerer M, Gangwar A, Dieterle G, Weigand M, Stoll H, Woltersdorf G, Back C H and Schütz G 2014 Appl. Phys. Lett. 104 012409
|
[19] |
Barros N, Rassam H and Kachkachi H 2013 Phys. Rev. B 88 014421
|
[20] |
Zhang G F, Li Z X, Wang X G, Nie Y Z and Guo G H 2015 J. Magn. Magn. Mater. 385 402
|
[21] |
Montoncello F, Giovannini L, Nizzoli F, Vavassori P and Grimsditch M 2008 Phys. Rev. B 77 214402
|
[22] |
Zheng Y and Zhu J G 1997 J. Appl. Phys. 81 5471
|
[23] |
Zhang W L, Tang R J, Jiang H C, Zhang W X, Peng B and Zhang H W 2005 IEEE Trans. Magn. 41 4390
|
[24] |
Han X F, Grimsditch M, Meersschaut J, Hoffmann A, Ji Y, Sort J, Nogués J, Divan R, Pearson J E and Keavney D J 2007 Phys. Rev. Lett. 98 147202
|
[25] |
Van Waeyenberge B, Puzic A, Stoll H, Chou K W, Tyliszczak T, Hertel R, Fahnle M, Bruck H, Rott K, Reiss G, Neudecker I, Weiss D, Back C H and Schutz G 2006 Nature 444 461
|
[26] |
Kammerer M, Weigand M, Curcic M, Noske M, Sproll M, Vansteenkiste A, Van Waeyenberge B, Stoll H, Woltersdorf G, Back C H and Schuetz G 2011 Nat. Commun. 2 279
|
[27] |
Garanin D A and Kachkachi H 2009 Phys. Rev. B 80 014420
|
[28] |
Seki T, Utsumiya K, Nozaki Y, Imamura H and Takanashi K 2013 Nat. Commun. 4 1726
|
[29] |
Donahue M J and Porter D G 2013 Object Oriented MicroMagnetic Framework Project at ITL/NIST
|
[30] |
Herring C and Kittel C 1951 Phys. Rev. 81 869
|
[31] |
Nembach H T, Shaw J M, Silva T J, Johnson W L, Kim S A, McMichael R D and Kabos P 2011 Phys. Rev. B 83 094427
|
[32] |
Nembach H T, Shaw J M, Boone C T and Silva T J 2013 Phys. Rev. Lett. 110 117201
|
[33] |
Kim S K 2010 J. Phys. D: Appl. Phys. 43 264004
|
[34] |
Gubbiotti G, Conti M, Carlotti G, Candeloro P, Fabrizio E D, Guslienko K Y, Andre A, Bayer C and Slavin A N 2004 J. Phys.: Condens. Matter. 16 7709
|
[35] |
Jorzick J, Demokritov S O, Hillebrands B, Bailleul M, Fermon C, Guslienko K Y, Slavin A N, Berkov D V and Gorn N L 2002 Phys. Rev. Lett. 88 047204
|
[36] |
Neusser S, Botters B and Grundler D 2008 Phys. Rev. B 78 054406
|
[37] |
Guslienko K Y, Chantrell R W and Slavin A N 2003 Phys. Rev. B 68 024422
|
[38] |
Guslienko K Y and Slavin A N 2005 Phys. Rev. B 72 014463
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|