|
|
Spin-orbit coupled Bose-Einstein condensates with Rydberg-dressing interaction |
Lü Hao (吕昊)a b, Zhu Shao-Bing (朱少兵)a b, Qian Jun (钱军)a, Wang Yu-Zhu (王育竹)a |
a Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
b University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Interaction between Rydberg atoms can be used to control the properties of interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Here we investigate the effect of the Rydberg-dressing interaction on the ground-state properties of a Bose-Einstein condensate imposed by Raman-induced spin-orbit coupling. We find that, in the case of SU(2)-invariant s-wave interactions, the gas is only in the plane-wave phase and the zero-momentum phase is absent. In particular, we also predict an unexpected magnetic stripe phase composed of two plane-wave components with unequal weight when s-wave interactions are non-symmetric, which originates from the Rydberg-dressing interaction.
|
Received: 10 March 2015
Revised: 23 April 2015
Accepted manuscript online:
|
PACS:
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
05.30.Jp
|
(Boson systems)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 11104292). |
Corresponding Authors:
Qian Jun
E-mail: jqian@mail.siom.ac.cn
|
Cite this article:
Lü Hao (吕昊), Zhu Shao-Bing (朱少兵), Qian Jun (钱军), Wang Yu-Zhu (王育竹) Spin-orbit coupled Bose-Einstein condensates with Rydberg-dressing interaction 2015 Chin. Phys. B 24 090308
|
[1] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[2] |
Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
|
[3] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[4] |
Bernevig B A and Hughes T L 2013 Topological Insulators and Topological Superconductors (Princeton: Princeton University Press)
|
[5] |
Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
|
[6] |
Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
|
[7] |
Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
|
[8] |
Goldman N, Juzeliūnas G, Öhberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
|
[9] |
Zhai H 2015 Rep. Prog. Phys. 78 026001
|
[10] |
Li Y, Martone G I and Stringari S 2014 arXiv:1410.5526 [cond-mat.quant-gas]
|
[11] |
Liao R, Yu Y X and Liu W M 2012 Phys. Rev. Lett. 108 080406
|
[12] |
Zhang W and Yi W 2013 Nat. Commun. 4 2711
|
[13] |
Xu Z F, You L and Ueda M 2013 Phys. Rew. A 87 063634
|
[14] |
Wu C J, Mondragon-Shem I and Zhou X F 2011 Chin. Phys. Lett. 28 097102
|
[15] |
Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F and Zhang S G 2014 Chin. Phys. B 23 070308
|
[16] |
Wang P, Yu Z Q, Fu Z K, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
|
[17] |
Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
|
[18] |
Ji S L, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S and Pan J W 2014 Nat. Phys. 10 314
|
[19] |
Campbell D L, Price R M, Putra A, Valdés-Cuiriel A, Trypogeorgos D, Spielman I B 2015 arXiv:1501.05984 [cond-mat.quant-gas]
|
[20] |
Gopalakrishnan S, Martin I and Demler E A 2013 Phys. Rev. Lett. 111 185304
|
[21] |
Wilson R M, Anderson B M and Clark C W 2013 Phys. Rev. Lett. 111 185303
|
[22] |
Béguin L, Vernier A, Chicireau R, Lahaye T and Browaeys A 2013 Phys. Rev. Lett. 110 263201
|
[23] |
Balewski J B, Krupp A T, Gaj A, Peter D, Büchler H P, Löw R, Hofferberth S and Pfau T 2013 Nature 502 664
|
[24] |
Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2013 Phys. Rev. Lett. 110 103001
|
[25] |
Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313
|
[26] |
Henkel N, Nath R and Pohl T 2010 Phys. Rev. Lett. 104 195302
|
[27] |
Otterbach J and Lemeshko M 2014 Phys. Rev. Lett. 113 070401
|
[28] |
Günter G, Schempp H, Robert-de-Saint-Vincent M, Gavryusev V, Helmrich S, Hofmann C S, Whitlock S and Weidemüller M 2013 Science 342 954
|
[29] |
Schauß P, Cheneau M, Endres M, Fukuhara T, Hild S, Omran A, Pohl T, Gross C, Kuhr S and Bloch I 2012 Nature 491 87
|
[30] |
Löw R, Weimer H, Nipper J, Balewski J B, Butscher B, Büchler H P and Pfau T 2012 J. Phys. B 45 113001
|
[31] |
Singer K, Stanojevic J, Weidemüller M and Côté R 2005 J. Phys. B 38 S295
|
[32] |
Reinhard A, Liebisch T C, Knuffman B and Raithel G 2007 Phy. Rew. A 75 032712
|
[33] |
Li Y, Pitaevskii L P and Stringari S 2012 Phys. Rev. Lett. 108 225301
|
[34] |
Martone G I, Li Y, Pitaevskii L P and Stringari S 2012 Phys. Rev. A 86 063621
|
[35] |
Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
|
[36] |
Zheng W, Yu Z Q, Cui X and Zhai H 2013 J. Phys. B 46 134007
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|