Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077804    DOI: 10.1088/1674-1056/24/7/077804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Doping inhomogeneity and staging of ultra-thin graphite intercalation compound flakes probed by visible and near-infrared Raman spectroscopy

Lu Yan (鲁妍), Zhang Xin (张昕), Wu Jiang-Bin (吴江滨), Li Xiao-Li (李晓莉), Li Qiao-Qiao (厉巧巧), Tan Ping-Heng (谭平恒)
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

When ultra-thin graphite intercalation compounds (GICs) are deposited on the SiO2/Si substrate, it is found that their colors are dependent on the thickness of GIC flakes. The sample colors of ultrathin GIC flakes can no longer provide qualitative information on the stage index. Here, multi-wavelength Raman spectroscopy is thus applied to study the doping inhomogeneity and staging of ultra-thin GICs by FeCl3 intercalation. The G band intensity of stage-1 GIC flakes is strongly enhanced by 532-nm laser excitation, while that of stage-2 and stage-3 flakes exhibits strong intensity enhancement for 785-nm laser excitation. The near-infrared lasers are suggested to probe the doping inhomogeneity and staging of ultra-thin GIC flakes.

Keywords:  ultra-thin graphite intercalation compounds      Raman spectroscopy      intensity enhancement      doping inhomogeneity  
Received:  10 January 2015      Revised:  06 February 2015      Accepted manuscript online: 
PACS:  78.67.Wj (Optical properties of graphene)  
  73.22.Pr (Electronic structure of graphene)  
  81.05.ue (Graphene)  
  78.30.-j (Infrared and Raman spectra)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11225421, 11474277, and 11434010).

Corresponding Authors:  Tan Ping-Heng     E-mail:  phtan@semi.ac.cn

Cite this article: 

Lu Yan (鲁妍), Zhang Xin (张昕), Wu Jiang-Bin (吴江滨), Li Xiao-Li (李晓莉), Li Qiao-Qiao (厉巧巧), Tan Ping-Heng (谭平恒) Doping inhomogeneity and staging of ultra-thin graphite intercalation compound flakes probed by visible and near-infrared Raman spectroscopy 2015 Chin. Phys. B 24 077804

[1] Dresselhaus M S and Dresselhaus G 2002 Adv. Phys. 51 1
[2] Caswell N and Solin S 1978 Solid State Commun. 27 961
[3] Underhill C, Leung S Y, Dresselhaus G and Dresselhaus M S 1979 Solid State Commun. 29 769
[4] Pollak E, Geng B, Jeon K J, Lucas I T, Richardson T J, Wang F and Kostecki R 2010 Nano Lett. 10 3386
[5] Zhao W J, Tan P H, Liu J and Ferrari A C 2011 J. Am. Chem. Soc. 133 5941
[6] Zhan D, Sun L, Ni Z H, Liu L, Fan X F, Wang Y, Yu T, Lam Y M, Huang W and Shen Z X 2010 Adv. Func. Mater 20 3504
[7] Khrapach I, Withers F, Bointon T H, Polyushkin D K, Barnes W L, Russo S and Craciun M F 2012 Adv. Mater 24 2844
[8] Enoki T, Suzuki M and Endo M 2003 Graphite Intercalation Com-pounds and Applications (London: Oxford University Press)
[9] Dimiev A M, Bachilo S M, Saito R and Tour J M 2012 ACS Nano 6 7842
[10] Dimiev A M, Ceriotti G, Behabtu N, Zakhidov D, Pasquali M, Saito R and Tour J M 2013 ACS Nano 7 2773
[11] Crowther A C, Ghassaei A, Jung N and Brus L E 2012 ACS Nano 6 1865
[12] Zhao W J, Tan P H, Zhang J and Liu J 2010 Phys. Rev. B 82 245423
[13] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 PNAS 102 10451
[14] Tan P H, Deng Y M, Zhao Q and Cheng W C 1999 Appl. Phys. Lett. 74 1818
[15] Das A, Pisana S, Chakraborty B, Piscanec S, Sah S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K and Ferrari A C 2008 Nat. Nanotechnol. 3 210
[16] Bruna M and Borini S 2011 Phys. Rev. B 83 241401
[17] Basko D M 2009 New J. Phys. 11 095011
[18] Kalbac M, Reina-Cecco A, Farhat H, Kong J, Kavan L and Dresselhaus M S 2010 ACS Nano 4 6055
[19] Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G and Wang F 2011 Nature 471 617
[20] Han W P, Shi Y M, Li X L, Luo S Q, Lu Y and Tan P H 2013 Acta Phys. Sin. 62 110702 (in Chinese)
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[3] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[6] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[7] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[8] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[9] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[10] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[11] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[12] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
[13] Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials
Yu-Jia Sun(孙宇伽), Si-Min Pang(庞思敏), and Jun Zhang(张俊). Chin. Phys. B, 2021, 30(11): 117104.
[14] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
[15] Spin-phonon coupling in van der Waals antiferromagnet VOCl
Wen-Jun Wang(王文君), Xi-Tong Xu(许锡童), Jie Shen(沈洁), Zhe Wang(王哲), Shi-Le Zhang(张仕乐), and Zhe Qu(屈哲). Chin. Phys. B, 2021, 30(10): 107502.
No Suggested Reading articles found!