ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Image information transfer via electromagnetically induced transparency-based slow light |
Wang Xiao-Xiao (王潇潇)a, Sun Jia-Xiang (孙家翔)a, Sun Yuan-Hang (孙远航)a, Li Ai-Jun (李爱军)a, Chen Yi (陈怡)b, Zhang Xiao-Jun (张晓军)c, Kang Zhi-Hui (康智慧)a, Wang Lei (王磊)a, Wang Hai-Hua (王海华)a, Gao Jin-Yue (高锦岳)a |
a College of Physics, Jilin University, Changchun 130012, China; b Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; c Changhun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun 130117, China |
|
|
Abstract In this work, we experimentally demonstrate an image information transfer between two channels by using slow light based on electromagnetically induced transparency (EIT) in a solid. The probe optical image is slowed due to steep dispersion induced by EIT. By applying an additional control field to an EIT-driven medium, the slowed image is transferred into two information channels. Image intensities between two information channels can be controlled by adjusting the intensities of the control fields. The similarity of output images is further analyzed. This image information transfer allows for manipulating images in a controlled fashion, and will be important in further information processing.
|
Received: 10 February 2015
Revised: 20 March 2015
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921603), the National Natural Science Foundation of China (Grant Nos. 11374126, 11347137, 11204103, 11404336, and 11204029), and the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103202). |
Corresponding Authors:
Wang Lei, Wang Hai-Hua
E-mail: wang_lei@jlu.edu.cn;haihua@jlu.edu.cn
|
Cite this article:
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳) Image information transfer via electromagnetically induced transparency-based slow light 2015 Chin. Phys. B 24 074204
|
[1] |
Harris S E 1997 Phys. Today 50 36
|
[2] |
Fleischhauer M and Imamoglu A 2005 Rev. Mod. Phys. 77 633
|
[3] |
Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
|
[4] |
Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783
|
[5] |
Chen Y H, Lee M J, Wang I C, Du S W, Chen Y F, Chen Y C and Yu I A 2013 Phys. Rev. Lett. 110 083601
|
[6] |
Zhang X H, Bao Q Q, Zhang Y, Su M C, Cui C L and Wu J H 2012 Chin. Phys. B 21 054209
|
[7] |
Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
|
[8] |
Grodecka-Grad A, Zeuthen E and Sorensen A S 2012 Phys. Rev. Lett. 109 133601
|
[9] |
Ding D S, Zhou Z Y, Shi B S and Guo G C 2013 Nat. Commun. 4 2527
|
[10] |
Shuker M, Firstenberg O, Pugatch R, Ron A and Davidson N 2008 Phys. Rev. Lett. 100 223601
|
[11] |
Vudyasetu P K, Camacho R M and Howell J C 2008 Phys. Rev. Lett. 100 123903
|
[12] |
Cho Y W, Oh J E, and Kim Y H 2012 Phys. Rev. A 86 013844
|
[13] |
Pugatch R, Shuker M, Firstenberg O, Ron A and Davidson N 2007 Phys. Rev. Lett. 98 203601
|
[14] |
Veissier L, Nicolas A, Giner L, Maxein D, Sheremet A S, Giacobino E and Laurat J 2013 Opt. Lett. 38 712
|
[15] |
Ding D S, Wu J H, Zhou Z Y, Liu Y, Shi B S, Zou X B and Guo G C 2013 Phys. Rev. A 87 013835
|
[16] |
Ding D S, Wu J H, Zhou Z Y, Shi B S, Zou X B and Guo G C 2013 Phys. Rev. A 87 053830
|
[17] |
Zibrov A S, Matsko A B, Kocharovskaya O, Rostovtsev Y V, Welch G R and Scully M O 2002 Phys. Rev. Lett. 88 103601
|
[18] |
Chen Y F, Kuan P C, Wang S H, Wang C Y and Yu I A 2006 Opt. Lett. 31 3511
|
[19] |
Appel J, Marzlin K P and Lvovsky A I 2006 Phys. Rev. A 73 013804
|
[20] |
Vewinger F, Appel J, Figueroa E and Lvovsky A I 2007 Opt. Lett. 32 2771
|
[21] |
Fan Y F, Wang H H, Wang R, Wei X G, Li A J, Kang Z H, Wu J H, Zhang H Z, Xu H L and Gao J Y 2011 New J. Phys. 13 123008
|
[22] |
Nilsson M, Rippe L and Kroll S 2004 Phys. Rev. B 70 214116
|
[23] |
Turukhin A V, Sudarshanam V S, Shahriar M S, Musser J A, Ham B S and Hemmer P R 2002 Phys. Rev. Lett. 88 023602
|
[24] |
Wang L, Yang Q Y, Wang X X, Luo M X, Fan Y F, Kang Z H, Dai T Y, Bi S, Wang H H, Wu J H and Gao J Y 2014 Chin. Phys. B 23 014205
|
[25] |
Wang H H, Wei X G, Wang L, Li Y J, Du D M, Wu J H, Kang Z H, Jiang Y and Gao J Y 2007 Opt. Express 15 16044
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|