CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Spin excitation spectra of spin–orbit coupled bosons in an optical lattice |
Li Ruo-Yan (李若言)a, He Liang (贺亮)b, Sun Qing (孙青)c, Ji An-Chun (纪安春)c, Tian Guang-Shan (田光善)a |
a School of Physics, Peking University, Beijing 100048, China;
b Institut für Theoretische Physik, Leopold-Franzens Universität Innsbruck, A-6020 Innsbruck, Austria;
c Department of Physics, Capital Normal University, Beijing 100048, China |
|
|
Abstract Spin-wave excitation plays important roles in the investigation of the magnetic phases. In this paper, we study the spin-wave excitation spectra of two-component Bose gases with spin–orbit coupling in a deep square optical lattice using the spin-wave theory. We find that, while the excitation spectrum of the vortex crystal phase is gapless with a linear dispersion in the vicinity of the minimum point, the spectra of the commensurate spiral spin phase and the skyrmion crystal phase are gapped. Significantly, the spin fluctuations strongly destabilize the classical ground state of the skyrmion phase with the appearance of an imaginary part in the eigenfrequencies of spin excitations. Such features of the spin excitation spectra provide further insights into the exotic spin phases.
|
Received: 08 November 2014
Revised: 26 December 2014
Accepted manuscript online:
|
PACS:
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11347197, 11404225, and 11474205). |
Corresponding Authors:
Sun Qing, Ji An-Chun
E-mail: sunqing@cnu.edu.cn;andrewjee@sina.com
|
About author: 67.85.-d; 37.10.Jk; 71.10.Fd |
Cite this article:
Li Ruo-Yan (李若言), He Liang (贺亮), Sun Qing (孙青), Ji An-Chun (纪安春), Tian Guang-Shan (田光善) Spin excitation spectra of spin–orbit coupled bosons in an optical lattice 2015 Chin. Phys. B 24 056701
|
[1] |
Hasan M and Kane C 2010 Rev. Mod. Phys. 82 3045
|
[2] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[3] |
Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
|
[4] |
Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
|
[5] |
Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301
|
[6] |
Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
|
[7] |
Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
|
[8] |
Stanescu T D, Anderson B and Galitski V 2008 Phys. Rev. A 78 023616
|
[9] |
Wang C J, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
|
[10] |
Ho T L and Zhang S Z 2011 Phys. Rev. Lett. 107 150403
|
[11] |
Xu Z F, Lü R and You L 2011 Phys. Rev. A 83 053602
|
[12] |
Wu C J, Shem I M and Zhou X F 2011 Chin. Phys. Lett. 28 097102
|
[13] |
Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
|
[14] |
Li Y, Pitaevskii L P and Stringari S 2012 Phys. Rev. Lett. 108 225301
|
[15] |
Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
|
[16] |
Hu H, Bamachandhran B, Pu H and Liu X J 2012 Phys. Rev. Lett. 108 010402
|
[17] |
Wilson R M, Anderson B M and Clark C W 2013 Phys. Rev. Lett. 111 185303
|
[18] |
Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
|
[19] |
Su S W, Liu I K, Tsai Y C, Liu W M and Gou S C 2012 Phys. Rev. A 86 023601
|
[20] |
Deng Y, Cheng J, Jing H, Sun C P and Yi S 2012 Phys. Rev. Lett. 108 125301
|
[21] |
Vyasanakere J P, Zhang S and Shenoy V B 2011 Phys. Rev. B 84 014512
|
[22] |
Hu H, Jiang L, Liu X J and Pu H 2011 Phys. Rev. Lett. 107 195304
|
[23] |
Yu Z Q and Zhai H 2011 Phys. Rev. Lett. 107 195305
|
[24] |
Gong M, Tewari S and Zhang C 2011 Phys. Rev. Lett. 107 195303
|
[25] |
Wen L, Sun Q, Wang H Q, Ji A C and Liu W M 2012 Phys. Rev. A 86 043602
|
[26] |
Li Z and Cao H 2014 Acta Phys. Sin. 63 110306
|
[27] |
Zhou X F, Li Y, Cai Z and Wu C J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134001
|
[28] |
Goldman N, Juzeliūnas G, Öhberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
|
[29] |
Zhai H 2015 Report of Progress in Physics 78 026001
|
[30] |
Lewenstein M, Sanpera A, Ahunger V, Damski B, Sen De A and Sen U 2007 Adv. Phys. 56 243
|
[31] |
Mei F, Zhang D W and Zhu S L 2013 Chin. Phys. B 22 116106
|
[32] |
Esslinger T 2010 Annu. Rev. Condens. Matter Phys. 1 129
|
[33] |
Anderson P W 1959 Phys. Rev. 115 2
|
[34] |
Datta N, Fernandez R and Fröhlich J 1999 J. Stat. Phys. 96 545
|
[35] |
Wang Z J and Qiu X M 1997 Commun. Theor. Phys. 28 51
|
[36] |
Ji A C, Wang J and Tian G S 2002 Commun. Theor. Phys. 37 607
|
[37] |
Osterloh K, Baig M, Santos L, Zoller P and Lewenstein M 2005 Phys. Rev. Lett. 95 010403
|
[38] |
Bermudez A, Goldman N, Kubasiak A, Lewenstein M and Martin-Delgado M A 2010 New J. Phys. 12 033041
|
[39] |
Goldman N, Satija I, Nikolic P, Bermudez A, Martin-Delgado M A, Lewenstein M and Spielman I B 2010 Phys. Rev. Lett. 105 255302
|
[40] |
Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A 2009 Phys. Rev. Lett. 103 035301
|
[41] |
Bermudez A, Mazza L, Rizzi M, Goldman N, Lewenstein M and Martin-Delgado M A 2010 Phys. Rev. Lett. 105 190404
|
[42] |
Graß T, Saha K, Sengupta K and Lewenstein M 2011 Phys. Rev. A 84 053632
|
[43] |
Cole W S, Zhang S Z, Paramekanti A and Trivedi N 2012 Phys. Rev. Lett. 109 085302
|
[44] |
Radić J, DiCiolo A, Sun K and Galitski V 2012 Phys. Rev. Lett. 109 085303
|
[45] |
Cai Z, Zhou X and Wu C 2012 Phys. Rev. A 85 061605(R)
|
[46] |
Gong M, Qian Y Y, Scarola V W and Zhang C W 2012 arXiv:1205.6211 [cond-mat.quant-gas]
|
[47] |
Qian Y, Gong M, Scarola V W and Zhang C W 2013 arXiv:1312.4011 [cond-mat.quant-gas]
|
[48] |
Zhu G B, Sun Q, Zhang Y Y, Chan K S, Liu W M and Ji A C 2013 Phys. Rev. A 88 023608
|
[49] |
Sun Q, Zhu G B, Liu W M and Ji A C 2013 Phys. Rev. A 88 063637
|
[50] |
Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
|
[51] |
Moriya T 1960 Phys. Rev. 120 91
|
[52] |
Pesin D and Balents L 2010 Nat. Phys. 6 376
|
[53] |
Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713
|
[54] |
Banerjee S, Erten O and Randeria M 2013 Nat. Phys. 9 626
|
[55] |
Kleine B, Müller-Hartmann E, Frahm K and Fazekas P 1992 Z. Phys. B 87 103
|
[56] |
Shinkevich S, Syljuåsen O F and Eggert S 2011 Phys. Rev. B 83 054423
|
[57] |
Roldán-Molina A, Santander M J, Núñez Á S and Fernáandez-Rossier J 2014 Phys. Rev. B 89 054403
|
[58] |
Schmidt B and Thalmeier P 2014 Phys. Rev. B 89 184402
|
[59] |
Zhang H, Arlego M and Lamas C A 2014 Phys. Rev. B 89 024403
|
[60] |
Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A 2009 Phys. Rev. Lett. 103 035301
|
[61] |
Hewson A C 1997 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
|
[62] |
Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
|
[63] |
Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
|
[64] |
Sachdev S 2011 Quantum Phase Transitions (Cambridge: Cambridge University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|