ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Phase and direction dependence of photorefraction in a low-frequency strong circular-polarized plane wave |
Huang Yong-Sheng (黄永盛), Wang Nai-Yan (王乃彦), Tang Xiu-Zhang (汤秀章) |
High Power KrF Excimer Laser Laboratory, China Institute of Atomic Energy, Beijing 102413, China |
|
|
Abstract Contrary to the superposition principle, it is well known that photorefraction exists in the vacuum with the presence of a strong static field, a laser field, or a rotational magnetic field. Different from the classical optical crystals, the refractive index also depends on the phase of the strong electromagnetic field. We obtain the phase and direction dependence of the refractive index of a probe wave incident in the strong field of a circular-polarized plane wave by solving the Maxwell equations corrected by the effective Lagrangian. It may provide a valuable theoretical basis to calculate the polarization evolution of waves in the strong electromagnetic circumstances of pulsar or neutron stars.
|
Received: 10 October 2014
Revised: 19 November 2014
Accepted manuscript online:
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.50.-p
|
(Quantum optics)
|
|
03.70.+k
|
(Theory of quantized fields)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB808104) and the National Natural Science Foundation of China (Grant No. 11105233). |
Corresponding Authors:
Huang Yong-Sheng
E-mail: huangyongs@gmail.com
|
About author: 42.25.Bs; 42.50.-p; 03.70.+k; 42.50.Pq |
Cite this article:
Huang Yong-Sheng (黄永盛), Wang Nai-Yan (王乃彦), Tang Xiu-Zhang (汤秀章) Phase and direction dependence of photorefraction in a low-frequency strong circular-polarized plane wave 2015 Chin. Phys. B 24 054202
|
[1] |
Abdukerim N, Li Z L and Xie B S 2013 Phys. Lett. B 726 820
|
[2] |
Su Q, Su W, Lv Z Q, Jiang M, Lu X, Sheng Z M and Grobe R 2012 Phys. Rev. Lett. 109 253202
|
[3] |
Adler S L and Schubert C 1996 Phys. Rev. Lett. 77 1695
|
[4] |
Heyl J S and Hernquist L 1997 J. Phys. A: Math. Gen. 30 6485
|
[5] |
Zavattini E, Zavattini G, Ruoso G, Polacco E, Milotti E, Karuza M, Gastaldi U, Di Domenico G, Della Valle F, Cimino R, Carusotto S, Cantatore G and Bregant M (PVLAS Collaboration) 2007 Nucl. Phys. B, Proc. Suppl. 164 264
|
[6] |
Della Valle F, Gastaldi U, Messineo G, Milotti E, Pengo R, Piemontese L, Ruoso G and Zavattini G 2013 New J. Phys. 15 053026
|
[7] |
Adler S L 2007 J. Phys. A: Math. Theor. 40 F143
|
[8] |
Biswas S and Melnikov K 2007 Phys. Rev. D 75 053003
|
[9] |
Kryuchkyan G Y and Hatsagortsyan K Z 2011 Phys. Rev. Lett. 107 053604
|
[10] |
Fedotov A M, Narozhny N B, Mourou G and Korn G 2010 Phys. Rev. Lett. 105 080402
|
[11] |
Bell A R and Kirk J G 2008 Phys. Rev. Lett. 101 200403
|
[12] |
Gies H, Karbstein F and Seegert N 2013 New J. Phys. 15 083002
|
[13] |
Wang Z Y, Shi S J and Qiu Q 2014 Chin. Phys. B 23 034201
|
[14] |
Heyl J S and Hernquist L 1997 Phys. Rev. D 55 2449
|
[15] |
Heyl J S and Shaviv N J 2000 Mon. Not. R. Astron. Soc. 311 555
|
[16] |
King B, Piazza A D and Keitel C H 2010 Nat. Photon. 4 92
|
[17] |
King B, Piazza A D and Keitel C H 2010 Phys. Rev. A 82 032114
|
[18] |
Kubo H and Nagata R 1983 J. Opt. Soc. Am. 73 1719
|
[19] |
Barnard J J 1986 The Astrophysical Journal 303 280
|
[20] |
Cheng A F and Ruderman M A 1979 The Astrophysical Journal 229 348
|
[21] |
Hattori K and Itakura K 2013 Ann. Phys. 330 23
|
[22] |
Karbstein F 2013 Phys. Rev. D 88 085033
|
[23] |
Gies H, Karbstein F and Shaisultanov R 2014 Phys. Rev. D 90 033007
|
[24] |
Becker W and Mitter H 1975 J. Phys. A 8 1638
|
[25] |
Hattori K and Itakura K 2013 Ann. Phys. 334 58
|
[26] |
Baier v N, Mil'shtein A I and Strakhovenk V M 1976 Sov. Phys. JETP 42 961
|
[27] |
Affleck I 1988 J. Phys. A 21 693
|
[28] |
Piazza A D, Hatsagortsyan K Z and Keitel C H 2006 Phys. Rev. Lett. 97 083603
|
[29] |
Heisenberg W and Euler H 1936 Z. Physik 98 714
|
[30] |
Baring M G and Harding A K 2009 The Astrophysical Journal 507 L55
|
[31] |
Wang C and Lai D 2009 Monthly Notices of the Royal Astronomical Society 398 515
|
[32] |
Lai D and Ho W C G 2003 Phys. Rev. Lett. 91 071101
|
[33] |
Pavlov G G, Shibanov Y A, Ventura J and Zavlin V E 1994 Astronomy & Astrophysics 289 837
|
[34] |
Rajagopal M, Romani R W and Miller M C 1997 The Astrophysical Journal 479 347
|
[35] |
Shaviv N J, Heyl J S and Lithwick Y 1996 Mon. Not. R. Astron. Soc. 306 333
|
[36] |
Adelsberg M V and Lai D 2006 Mon. Not. R. Astron. Soc. 373 1495
|
[37] |
Potekhin A Y, Suleimanov V F, Adelsberg M V and Werner K 2012 Astronomy & Astrophysics 546 A121
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|