Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 054203    DOI: 10.1088/1674-1056/24/5/054203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ghost imaging based on Pearson correlation coefficients

Yu Wen-Kai (俞文凯)a b, Yao Xu-Ri (姚旭日)a b, Liu Xue-Feng (刘雪峰)a, Li Long-Zhen (李龙珍)a b, Zhai Guang-Jie (翟光杰)b
a Key Laboratory of Electronics and Information Technology for Space System, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Correspondence imaging is a new modality of ghost imaging, which can retrieve a positive/negative image by simple conditional averaging of the reference frames that correspond to relatively large/small values of the total intensity measured at the bucket detector. Here we propose and experimentally demonstrate a more rigorous and general approach in which a ghost image is retrieved by calculating a Pearson correlation coefficient between the bucket detector intensity and the brightness at a given pixel of the reference frames, and at the next pixel, and so on. Furthermore, we theoretically provide a statistical interpretation of these two imaging phenomena, and explain how the error depends on the sample size and what kind of distribution the error obeys. According to our analysis, the image signal-to-noise ratio can be greatly improved and the sampling number reduced by means of our new method.
Keywords:  coherence      image forming and processing      probability theory  
Received:  27 October 2014      Revised:  22 November 2014      Accepted manuscript online: 
PACS:  42.25.Kb (Coherence)  
  42.30.Va (Image forming and processing)  
  02.50.Cw (Probability theory)  
Fund: Project Project of China (Grant No. 2013YQ030595) and the National High Technology Research and Development Program of China (Grant No. 2013AA122902).
Corresponding Authors:  Zhai Guang-Jie     E-mail:  gjzhai@nssc.ac.cn
About author:  42.25.Kb; 42.30.Va; 02.50.Cw

Cite this article: 

Yu Wen-Kai (俞文凯), Yao Xu-Ri (姚旭日), Liu Xue-Feng (刘雪峰), Li Long-Zhen (李龙珍), Zhai Guang-Jie (翟光杰) Ghost imaging based on Pearson correlation coefficients 2015 Chin. Phys. B 24 054203

[1] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Phys. Rev. Lett. 74 p3600
[2] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[3] Abouraddy A F, Saleh B E A, Sergienko A V and Teich M C 2001 Phys. Rev. Lett. 87 123602
[4] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[5] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[6] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A 2005 Phys. Rev. Lett. 94 183602
[7] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[8] Scarcelli G, Berardi V and Shih Y 2006 Phys. Rev. Lett. 96 063602
[9] Gatti A, Bondani M, Lugiato L A, Paris M G A and Fabre C 2007 Phys. Rev. Lett. 98 039301
[10] Shapiro J H 2008 Phys. Rev. A 78 061802
[11] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[12] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603
[13] Yu W K, Li S, Yao X R, Liu X F, Wu L A and Zhai G J 2013 Appl. Opt. 52 p7882
[14] Yu W K, Li M F, Yao X R, Liu X F, Wu L A and Zhai G J 2014 Opt. Express 22 7133
[15] Liu X F, Chen X H, Yao X R, Yu W K, Zhai G J and Wu L A 2014 Opt. Lett. 39 2314
[16] Wu L A and Luo K H 2011 AIP Conf. Proc. 1384 223
[17] Luo K H, Huang B Q, Zheng W M and Wu L A 2012 Chin. Phys. Lett. 29 074216
[18] Wen J M 2011 arXiv:1101.4869v1
[19] Wen J M 2012 J. Opt. Soc. Am. A 29 1906
[20] Meyers R E, Deacon K S and Shih Y 2012 Appl. Phys. Lett. 100 131114
[21] Yao Y P, Wan R G, Xue Y L, Zhang S W and Zhang T Y 2013 Acta Phys. Sin. 62 154201 (in Chinese)
[22] Liu X F, Yao X R, Li M F, Yu W K, Chen X H, Sun Z B, Wu L A and Zhai G J 2013 Acta Phys. Sin. 62 184205 (in Chinese)
[23] Li M F, Zhang Y R, Luo K H, Wu L A and Fan H 2013 Phy. Rev. A 87 033813
[24] Li M F, Zhang Y R, Liu X F, Yao X R, Luo K H, Fan H and Wu L A 2013 Appl. Phys. Lett. 103 211119
[25] Bai X, Li Y Q and Zhao S M 2013 Acta Phys. Sin. 62 044209 (in Chinese)
[26] Zhao S M and Zhuang P 2014 Chin. Phys. B 23 054203
[27] Pearson K 1895 Proceedings of the Royal Society of London 58 240
[28] Elad M 2010 Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing (Springer)
[29] Rahman N A 1968 A Course in Theoretical Statistics (Charles Griffin and Company)
[30] Fisher R A 1921 Metron 1 3
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[3] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[4] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[5] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[6] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[7] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[8] Effects of mesoscale eddies on the spatial coherence of a middle range sound field in deep water
Fei Gao(高飞), Fang-Hua Xu(徐芳华), and Zheng-Lin Li(李整林). Chin. Phys. B, 2022, 31(11): 114302.
[9] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[10] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[11] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[12] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[13] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[14] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[15] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
No Suggested Reading articles found!