ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer |
Xiangxian Wang(王向贤)1, Jiankai Zhu(朱剑凯)1, Huan Tong(童欢)1, Xudong Yang(杨旭东)1, Xiaoxiong Wu(吴枭雄)1, Zhiyuan Pang(庞志远)1, Hua Yang(杨华)1, Yunping Qi(祁云平)2 |
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
2 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract A plasmonic refractive index (RI) sensor with high RI sensitivity based on a gold composite structure is proposed. This composite structure is constructed from a perfect gold nano-disk square array on a gold film, with a SiO2 spacer. The reflection spectra of the composite structure, with analyte RI in the range of 1.30 to 1.40, are theoretically studied using the finite-difference time-domain method. The incident light beam is partly coupled to the localized surface plasmons (LSP) of the single nano-disks and partly transferred to the propagating surface plasmons (PSP) by grating coupling. The reflectivity is nearly zero at the valley of the reflection spectrum because of the strong coupling between LSP and PSP. Also, the full width at half maximum (FWHM) of one of the surface plasmon polaritons (SPPs) modes is very narrow, which is helpful for RI sensing. An RI sensitivity as high as 853 nm/RIU is obtained. The influence of the structure parameters on the RI sensitivity and the sensor figure of merit (FOM) are investigated in detail. We find that the sensor maintains high RI sensitivity over a large range of periods and nano-disk diameters. Results of the theoretical simulation of the composite structure as a plasmonic sensor are promising. Thus, this composite structure could be extensively applied in the fields of biology and chemistry.
|
Received: 30 October 2018
Revised: 09 January 2019
Accepted manuscript online:
|
PACS:
|
42.25.-p
|
(Wave optics)
|
|
42.70.-a
|
(Optical materials)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61865008 and 61505074), the Undergraduate Innovation Training Program of Gansu Province, China (Grant No. DC2018002), and the Undergraduate Innovation Training Program of Lanzhou University of Technology (Grant No. DC2018004). |
Corresponding Authors:
Xiangxian Wang
E-mail: wangxx869@126.com
|
Cite this article:
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平) A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer 2019 Chin. Phys. B 28 044201
|
[1] |
Hou W and Cronin S B 2013 Adv. Funct. Mater. 23 1612
|
[2] |
Yan Y, Yang H, Zhao X, Li R and Wang X 2018 Mater. Res. Bull. 105 286
|
[3] |
Zhao X, Yang H, Li S, Cui Z and Zhang C 2018 Mater. Res. Bull. 107 180
|
[4] |
Zheng C and Yang H 2018 J. Mater. Sci. Mater. Electron. 29 9291
|
[5] |
Ye Y, Yang H, Zhang H and Jiang J 2018 Environ. Technol.
|
[6] |
Chen Y, Wang X, Wang R, Yang H and Qi Y 2017 Chin. Phys. B 26 054203
|
[7] |
Wang X, Tong H, Pang Z, Zhu J, Wu X, Yang H and Qi Y 2019 Opt. Quantum Electron. 51 38
|
[8] |
Pang Z, Tong H, Wu X, Zhu J, Wang X, Yang H and Qi Y 2018 Opt. Quantum Electron. 50 335
|
[9] |
Yang Z J, Jiang R, Zhuo X, Xie Y M, Wang J and Lin H Q 2017 Phys. Rep. 701 1
|
[10] |
Wang J, Lu C, Hu Z, Chen C, Pan L and Ding W 2018 Opt. Express 26 23221
|
[11] |
Chen J, Yi Z, Xiao S and Xu X 2018 Mater. Res. Express 5 015605
|
[12] |
Liu L, Chen J, Zhou Z, Yi Z and Ye X 2018 Mater. Res. Express 5 045802
|
[13] |
Yu M, Huang Z, Liu Z, Chen J, Liu Y, Tang L and Liu G 2018 Sens. Actuators B Chem. 262 845
|
[14] |
Liu G, Yu M, Liu Z, Liu X and Huang S 2015 Nanotechnology 26 185702
|
[15] |
Wang X, Bai X, Pang Z, Yang H, Qi Y and Wen X 2019 Acta Phys. Sin. 68 037301 (in Chinese)
|
[16] |
Du H, Zhang L and Li D 2018 Plasma Sci. Technol. Pap. 20 115001
|
[17] |
Li D, Zhang L and Du H 2019 Plasma Sci. Technol. 21 045002
|
[18] |
Safari S and Jazi B 2018 Plasmonics 13 1449
|
[19] |
Cennamo N, D'Agostino G, Doná A, Dacarro G, Pallavicini P, Pesavento M and Zeni L 2013 Sens. (Switzerland) 13 14676
|
[20] |
Law W, Yong K, Baev A and Prasad P N 2011 ACS Nano 5 4858
|
[21] |
Petryayeva E and Krull U J 2011 Anal. Chim. Acta 706 8
|
[22] |
Kim J A, Hwang T, Dugasani S R, Amin R, Kulkarni A, Park S H and Kim T 2013 Sens. Actuators B Chem. 187 426
|
[23] |
Qu S, Song C, Xia X, Liang X, Tang B, Hu Z and Wang J 2016 Sensors 16 784
|
[24] |
Liu C, Wang F, Lv J, Sun T, Liu Q, Fu C, Mu H and Chu P K 2016 Opt. Commun. 359 378
|
[25] |
Wang F, Sun Z, Sun T, Liu C, Chu P K and Bao L 2018 J. Opt. 47 288
|
[26] |
Im H, Shao H, Il Y, Peterson V M, Castro C M, Weissleder R and Lee H 2014 Nat. Biotechnol. 32 490
|
[27] |
Pallarola D, Schneckenburger M, Spatz J P and Pacholski C 2013 Chem. Commun. 49 8326
|
[28] |
Coskun A F, Cetin A E, Galarreta B C, Alvarez D A, Altug H and Ozcan A 2014 Sci. Rep. 4 6789
|
[29] |
Wang X, Bai X, Pang Z, Yang H and Qi Y 2019 Results Phys. 12 1866
|
[30] |
Li J, Zhao Y, Hu H, Wang Q and Zhang J 2015 Optik (Stuttg). 126 199
|
[31] |
Wang X, Wu X, Chen Y, Bai X, Pang Z, Yang H, Qi Y and Wen X 2018 AIP Adv. 8 105029
|
[32] |
Byun K M, Kim S J and Kim D 2007 Appl. Opt. 46 5703
|
[33] |
Mayer K M, Hafner J H and À A 2011 Chem. Rev. 111 3828
|
[34] |
Nusz G J, Marinakos S M, Curry A C, Dahlin A, Höök F, Wax A and Chilkoti A 2008 Anal. Chem. 80 984
|
[35] |
Dondapati S K, Sau T K, Hrelescu C, Klar T A, Stefani F D and Feldmann J 2010 ACS Nano 4 6318
|
[36] |
Huang C, Ye J, Wang S, Stakenborg T and Lagae L 2012 Appl. Phys. Lett. 100 173114
|
[37] |
Zhang Z, Wang L, Hu H, Li K, Ma X and Song G 2013 Chin. Phys. B 22 104213
|
[38] |
Wang S, Sun X, Ding M, Peng G, Qi Y, Wang Y and Ren J 2018 J. Phys. D: Appl. Phys. 51 405101
|
[39] |
Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D and Yu Y 2017 Opt. Express 25 3675
|
[40] |
Chen J, Zhang T, Tang C, Mao P, Liu Y, Yu Y and Liu Z 2016 IEEE Photon. Technol. Lett. 28 1529
|
[41] |
Cen C, Chen J, Liang C, Huang J, Chen X, Tang Y, Yi Z, Xu X, Yi Y and Xiao S 2018 Physica E 103 93
|
[42] |
Zhang X, Qi Y, Zhou P, Gong H, Hu B and Yan C 2018 Photonic Sens. 8 367
|
[43] |
Qi Y, Zhang X, Zhou P, Hu B and Wang X 2018 Acta Phys. Sin. 67 197301 (in Chinese)
|
[44] |
Wang J, Sun L, Hu Z, Liang X and Liu C 2014 AIP Adv. 4 123006
|
[45] |
Wang J, Song C, Hang J, Hu Z and Zhang F 2017 Opt. Express 25 23880
|
[46] |
Cen Chunlian, Lin H, Huang J, Liang C, Chen X, Tang Y, Yi Z, Ye X, Liu J, Yi Y and Xiao S 2018 Sensors 18 4489
|
[47] |
Liang C, Niu G, Chen X, Zhou Z, Yi Z, Ye X, Duan T, Yi Y and Xiao S 2019 Opt. Commun. 436 57
|
[48] |
Liu Z, Liu G, Huang S, Liu X, Pan P, Wang Y and Gu G 2015 Sens. Actuators B Chem. 215 480
|
[49] |
Yang Z J 2016 J. Phys. Chem. C 120 21843
|
[50] |
Yang Z J, Zhao Q and He J 2017 Opt. Express 25 15927
|
[51] |
Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
|
[52] |
Yi Z, Liu M, Luo J, Zhao Y, Zhang W, Yi Y, Yi Y, Duan T, Wang C and Tang Y 2017 Opt. Commun. 390 1
|
[53] |
Cesario J 2005 Opt. Lett. 30 3404
|
[54] |
Chu Y and Crozier K B 2009 Opt. Lett. 34 244
|
[55] |
Zhou F, Liu Y and Cai W 2014 Opt. Lett. 39 1302
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|