SPECIAL TOPIC—110th Anniversary of Lanzhou University |
Prev
Next
|
|
|
Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces |
Yaojin Li(李耀进)1,2, Vladimir Koval3, Chenglong Jia(贾成龙)1 |
1 Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2 Electronic Materials Research Laboratory International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China;
3 Institute of Materials Research, Slovak Academy of Sciences Watsonova 47, 04001 Kosice, Slovakia |
|
|
Abstract The interfacial magnetoelectric interaction originating from multi-orbital hopping processes with ferroelectric-associated vector potential is theoretically investigated for complex-oxide composite structures. Large mismatch in the electrical permittivity of the ferroelectric and ferromagnetic materials gives rise to giant anisotropic magnetoelectric effects at their interface. Our study reveals a strong linear dynamic magnetoelectric coupling which genuinely results in electric control of magnetic susceptibility. The constitutive conditions for negative refractive index of multiferroic composites are determined by the analysis of light propagation.
|
Received: 07 June 2019
Revised: 19 July 2019
Accepted manuscript online:
|
PACS:
|
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
|
75.50.Dd
|
(Nonmetallic ferromagnetic materials)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474138 and 11834005), the Fund from the Ministry of Science and Technology of China (Grant No. CN-SK-8-4), the Science Foundation from the Slovak Academy of Sciences (Grant No. 2/0059/17), and the Science Fund from the Slovak Research and Development Agency (Grant No. APVV SK-CN-2017-0004). |
Corresponding Authors:
Chenglong Jia
E-mail: cljia@lzu.edu.cn
|
Cite this article:
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙) Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces 2019 Chin. Phys. B 28 097501
|
[41] |
Anderson P W and Hasegawa H 1955 Phys. Rev. 100 675
|
[42] |
de Gennes P G 1960 Phys. Rev. 118 141
|
[1] |
Prellier W, Singh M P and Murugavel P 2005 J. Phys.:Condens. Matter 17 R803
|
[2] |
Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
|
[43] |
Auerbach A 1994 Interacting Electrons and Quantum Magnetism (Berlin:Springer-Verlag) pp. 25-28
|
[44] |
Graf M and Vogl P 1995 Phys. Rev. B 51 4940
|
[3] |
Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
|
[45] |
Ismail-Beigi S, Chang E K and Louie S G 2001 Phys. Rev. Lett. 87 087402
|
[4] |
Spaldin N A, Cheong S W and Ramesh R 2010 Phys. Today 10 38
|
[46] |
Mostovoy M 2006 Phys. Rev. Lett. 96 067601
|
[5] |
Vaz C A F 2012 J. Phys.:Condens. Matter 24 333201
|
[47] |
Betouras J J, Giovannetti G and Van den Brink J 2007 Phys. Rev. Lett. 98 257602
|
[6] |
Nagaosa N and Tokura Y 2012 Phys. Scr. T146 014020
|
[48] |
Engelbrecht S, Shuvaev A M, Luo Y, Moshnyaga V and Pimenov A 2011 Europhys. Lett. 95 37005
|
[7] |
Nozaki T, Shiota Y, Miwa S, Murakami S, Bonell F, Ishibashi S, Kubota H, Yakushiji K, Saruya T, Fukushima A, Yuasa S, Shinjo T and Suzuki Y 2012 Nat. Phys. 8 491
|
[49] |
Jia C L, Wang F L, Jiang C J, Berakder J and Xue D S 2015 Sci. Rep. 5 11111
|
[8] |
Parkin S and Yang S H 2015 Nat. Nanotechnol. 10 209
|
[50] |
Jiang C J, Jia C L, Wang F L, Zhou C and Xue D S 2018 Phys. Rev. B 97 060408
|
[9] |
Kimura T 2012 Ann. Rev. Condens. Matter Phys. 3 93
|
[51] |
Jedrecy N, von Bardeleben H J, Badjeck V, Demaille D, Stanescu D, Magnan H and Barbier A 2013 Phys. Rev. B 88 121409
|
[10] |
Koval V, Skorvanek I, Durisin J, Viola G, Kovalcikova A, Svec P, Saksl K and Yan H 2017 J. Mater. Chem. C 5 2669
|
[52] |
Engelbrecht S, Shuvaev A M, Luo Y, Moshnyaga V and Pimenov A 2013 Europhys. Lett. 95 37005
|
[11] |
Vaz C A F, Hoffman J, Ahn C H and Ramesh R 2010 Adv. Mater. 22 2900
|
[12] |
Jia C L, Onoda S, Nagaosa N and Han J H 2007 Phys. Rev. B 76 144424
|
[13] |
Tokura Y, Seki S and Nagaosa N 2014 Rep. Prog. Phys. 77 076501
|
[14] |
Burton J D and Tsymbal E Y 2012 Phil. Trans. R. Soc. A 37 4840
|
[15] |
Jia C L, Wei T L, Jiang C J, Xue D S, Sukhov A and Berakdar J 2014 Phys. Rev. B 90 054423
|
[16] |
Li Y J, Chen M, Berakdar J and Jia C L 2017 Phys. Rev. B 96 054444
|
[17] |
Zhou C, Shen L, Liu M, Gao C X, Jia C L, Jiang C J and Xue D S 2018 Adv. Funct. Mater. 28 1707027
|
[18] |
Cui B, Song C, Wang G, Yan Y, Peng J, Miao J, Mao H, Li F, Chen C, Zeng F and Pan F 2014 Adv. Funct. Mater. 24 723
|
[19] |
Cui B, Song C, Gehring G A, Li F, Wang G, Chen C, Peng J, Mao H, Zeng F and Pan F 2015 Adv. Funct. Mater. 25 864
|
[20] |
Cui B, Song C, Mao H, Yan Y, Li F, Gao S, Peng J, Zeng F and Pan F 2016 Adv. Mater. 26 753
|
[21] |
Duan C G, Jaswal S S and Tsymbal E Y 2007 Phys. Rev. Lett. 318 1114
|
[22] |
Chakhalian J, Freeland J W, Habermeier H U, Cristiani G, Khaliullin G, van Veenendaal M and Keimer B 2006 Science 97 047201
|
[23] |
Benckiser E, Haverkort M W, Brück S, Goering E, Macke S, Frañó A, Yang X, Andersen O K, Cristiani G, Habermeier H U, Boris A V, Zegkinoglou I, Wochner P, Kim H J, Hinkov V and Keimer B 2011 Nat. Mater. 10 189
|
[24] |
Cui B, Song C, Mao H, Wu H, Li F, Peng J, Wang G, Zeng F and Pan F 2015 Adv. Funct. Mater. 27 6651
|
[25] |
Nagai T, Nagao M, Kurashima K, Asaka T, Zhang W and Kimoto K 2012 Appl. Phys. Lett. 101 162401
|
[26] |
Moreo A, Yunoki S and Dagotto E 1999 Science 283 2034
|
[27] |
Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
|
[28] |
Molegraaf H J A, Hoffman J, Vaz C A F, Gariglio S, Van der Marel D, Ahn C H and Triscone J M 2009 Adv. Mater. 21 3470
|
[29] |
Eerenstein W, Wiora M, Prieto J L, Scott J F and Mathur N D 2007 Nat. Mater. 6 348
|
[30] |
Thiele C, Dörr K, Bilani O, Rödel J and Schultz L 2007 Phys. Rev. B 75 054408
|
[31] |
Vaz C A F, Hoffman J, Segal Y, Reiner J W, Grober R D, Zhang Z, Ahn C H and Walker F J 2010 Phys. Rev. Lett. 104 127202
|
[32] |
Vaz C A F, Segal Y, Hoffman J, Grober R D, Walker F J and Ahn C H 2010 Appl. Phys. Lett. 75 054408
|
[33] |
Ivanshin V A, Deisenhofer J, Krug von Nidda H A, Loidl A, Mukhin A A, Balbashov A M and Eremin M V 2000 Phys. Rev. B 97 042506
|
[34] |
Ivannikov D, Biberacher M, Krug von Nidda H A, Pimenov A, Loidl A, Mukhin A A and Balbashov A M 2002 Phys. Rev. B 65 214422
|
[35] |
Yunoki S, Moreo A and Dagotto E 1998 Phys. Rev. Lett. 81 5612
|
[36] |
Kubo K, Edwards D M, Green A C M, Momoi T, and Sakamoto H 1998 arXiv:cond-mat/9811286[cond-mat.str-el]
|
[37] |
Motome Y, Nakano H and Imada M 1999 Mater. Sci. Eng. B 63 58
|
[38] |
Mostovoy M, Nomura K and Nagaosa N 2011 Phys. Rev. Lett. 106 047204
|
[39] |
Jackson J D 1998 Classical Electrodynamics, 3nd edn. (New York:Wiley) p. 18
|
[40] |
Zener C 1951 Phys. Rev. 82 403
|
[41] |
Anderson P W and Hasegawa H 1955 Phys. Rev. 100 675
|
[42] |
de Gennes P G 1960 Phys. Rev. 118 141
|
[43] |
Auerbach A 1994 Interacting Electrons and Quantum Magnetism (Berlin:Springer-Verlag) pp. 25-28
|
[44] |
Graf M and Vogl P 1995 Phys. Rev. B 51 4940
|
[45] |
Ismail-Beigi S, Chang E K and Louie S G 2001 Phys. Rev. Lett. 87 087402
|
[46] |
Mostovoy M 2006 Phys. Rev. Lett. 96 067601
|
[47] |
Betouras J J, Giovannetti G and Van den Brink J 2007 Phys. Rev. Lett. 98 257602
|
[48] |
Engelbrecht S, Shuvaev A M, Luo Y, Moshnyaga V and Pimenov A 2011 Europhys. Lett. 95 37005
|
[49] |
Jia C L, Wang F L, Jiang C J, Berakder J and Xue D S 2015 Sci. Rep. 5 11111
|
[50] |
Jiang C J, Jia C L, Wang F L, Zhou C and Xue D S 2018 Phys. Rev. B 97 060408
|
[51] |
Jedrecy N, von Bardeleben H J, Badjeck V, Demaille D, Stanescu D, Magnan H and Barbier A 2013 Phys. Rev. B 88 121409
|
[52] |
Engelbrecht S, Shuvaev A M, Luo Y, Moshnyaga V and Pimenov A 2013 Europhys. Lett. 95 37005
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|