Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 046102    DOI: 10.1088/1674-1056/24/4/046102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of size on momentum distribution of electrons around vacancies in NiO nanoparticles

Anjan Dasa, Atis Chandra Mandalb, P. M. G. Nambissanc
a Department of Physics, A.P.C. Roy Government College, Siliguri, Darjeeling 734010, West Bengal, India;
b Department of Physics, University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India;
c Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
Abstract  Very small nickel oxide nanoparticles were prepared by a sol-gel procedure using nickel nitrate hexahydrate and ammonium hydroxide as precursors. The particles are in the range of 5 nm-11 nm. The x-ray diffraction (XRD) crystallography and high resolution transmission electron microscopy (HRTEM) were employed to characterize the samples. They were found to be polycrystalline in nature and fcc (NaCl-type) in structure, with the lattice parameter varying with annealing temperature. HRTEM pictures show that the as-prepared samples are hexagonal in shape. Positron annihilation spectroscopy was used to investigate the Doppler-broadened spectra of the samples. The S and W parameters revealed that the chemical surroundings and momentum distribution of the vacancy clusters vary with crystallite size.
Keywords:  nanoparticles      semiconductor      defect cluster      positron annihilation      sol-gel  
Received:  23 September 2014      Revised:  08 December 2014      Accepted manuscript online: 
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  61.82.Fk (Semiconductors)  
  61.72.J- (Point defects and defect clusters)  
  78.70.Bj (Positron annihilation)  
Corresponding Authors:  Anjan Das     E-mail:  anjan802002@yahoo.co.in

Cite this article: 

Anjan Das, Atis Chandra Mandal, P. M. G. Nambissan Effect of size on momentum distribution of electrons around vacancies in NiO nanoparticles 2015 Chin. Phys. B 24 046102

[1] Han J F, Yang C W, Miao J W, Lu J F, Liu M, Luo X B and Shi M G 2010 Chin. Phys. Lett. 27 043601
[2] Xie Z, Ma Q M, Liu Y and Li Y C 2008 Chin. Phys. Lett. 25 1270
[3] Gong X F, Wang Y W and Ning X J 2008 Chin. Phys. Lett. 25 468
[4] Wang H Q, Zhou Y H and Xu Y 2007 Chin. Phys. Lett. 24 3570
[5] Kalam A, Abdullah G, Sehemi A, Ayed S, Shihri A, Du G and Ahmad T 2012 Mat. Chara. 68 77
[6] Gao X X, Jia Y H, Li G P, Cho S J and Kim H 2011 Chin. Phys. Lett. 28 033601
[7] Yang H, Qi W H, Ji D H, Shang Z F, Zhang X Y, Xu J, Lang L L and Tang G D 2014 Acta. Phys. Sin. 63 087503 (in Chinese)
[8] Xu R, Jia G Y and Liu C L 2014 Acta Phys. Sin. 63 078501 (in Chinese)
[9] Li S K, Tang J, Mao H Q, Wang M H, Chen G B, Zhai C, Zhang X M, Shi Y B and Liu J 2014 Acta Phys. Sin. 63 057501 (in Chinese)
[10] Deng J X, Chen L, Man C, Kong L, Cui M and Gao X F 2014 Chin. Phys. B 23 047104
[11] Deng Z, Zhao K and Jin C Q 2013 Physics 42 682 (in Chinese)
[12] Lei X Y, Liu H X, Zhang Y, Mao X H and Hao Y 2014 Chin. Phys. B 23 057305
[13] Monticone F and Alu A 2014 Chin. Phys. B 23 047809
[14] Zha G Q, Wang T, Xu Y D, Jie W Q 2013 Physics 42 862 (in Chinese)
[15] Yang Z G, Zhao B Q, Liu J S and Wang K J 2013 Physics 42 708 (in Chinese)
[16] Gao S, Sheng X Z, Feng Z, Wu C Q and Dong H H 2014 Acta Phys. Sin. 63 084205 (in Chinese)
[17] Tao R M, Zhou P, Wang X L, Si Lei and Liu Z J 2014 Acta Phys. Sin. 63 085202
[18] Shah M A 2008 Nano. Res. Let. 3 255
[19] Han D Y, Yang H Y, Shen C B, Zhou X and Wang F H 2004 Pow. Tech. 147 113
[20] Li X, Zhang X, Li Z and Qian Y 2006 Solid State Commun. 137 581
[21] Hua H W 2012 Physics 41 783 (in Chinese)
[22] Chatterjee A, Ramachandran K, Kumar A and Behere A 2013 Linux advanced multiparameter system, Nuclear Physics Division, BARC (2013), http://www.tifr.res.in/ pell/lamps.html
[23] Singh S N, Singh D S and Meetei D S 2014 Chin. Phys. B 23 058104
[24] Addala S, Bouhdjer L, Chala A, Bouhdjar A, Halimi O, Boudine B and Sebais M 2013 Chin. Phys. B 22 098103
[25] Siegel R W 1980 Ann. Rev. Mater. Sci. 10 393
[26] Hakala M, Puska M J and Nieminen R M 1998 Phys. Rev. B 57 7621
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[5] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[6] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[9] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[10] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[11] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[12] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[13] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[14] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[15] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
No Suggested Reading articles found!