CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Two-dimensional arsenic monolayer sheet predicted from first-principles |
Pu Chun-Ying (濮春英)a, Ye Xiao-Tao (叶小涛)b, Jiang Hua-Long (蒋华龙)a, Zhang Fei-Wu (张飞武)c d, Lu Zhi-Wen (卢志文)a, He Jun-Bao (何俊宝)a, Zhou Da-Wei (周大伟)a |
a College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China;
b College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China;
c Nanochemistry Research Institute, Curtin University, Perth, WA-6845, Australia;
d State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China |
|
|
Abstract Using first-principles calculations, we investigate the two-dimensional arsenic nanosheet isolated from bulk gray arsenic. Its dynamical stability is confirmed by phonon calculations and molecular dynamics analyzing. The arsenic sheet is an indirect band gap semiconductor with a band gap of 2.21 eV in the hybrid HSE06 functional calculations. The valence band maximum (VBM) and the conduction band minimum (CBM) are mainly occupied by the 4p orbitals of arsenic atoms, which is consistent with the partial charge densities of VBM and CBM. The charge density of the VBM G point has the character of a π bond, which originates from p orbitals. Furthermore, tensile and compressive strains are applied in the armchair and zigzag directions, related to the tensile deformations of zigzag and armchair nanotubes, respectively. We find that the ultimate strain in zigzag deformation is 0.13, smaller than 0.18 of armchair deformation. The limit compressive stresses of single-layer arsenic along armchair and zigzag directions are -4.83 GPa and -4.76 GPa with corresponding strains of -0.15 and -0.14, respectively.
|
Received: 12 August 2014
Revised: 28 September 2014
Accepted manuscript online:
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
63.20.D-
|
(Phonon states and bands, normal modes, and phonon dispersion)
|
|
62.25.-g
|
(Mechanical properties of nanoscale systems)
|
|
Fund: Projected supported by the Henan Joint Funds of the National Natural Science Foundation of China (Grant Nos. U1304612 and U1404608), the National Natural Science Foundation of China (Grant Nos. 51374132 and 11404175), the Special Fund for Theoretical Physics of China (Grant No. 11247222), and Nanyang Normal University Science Foundation, China (Grant Nos. ZX2012018 and ZX2013019). |
Corresponding Authors:
Zhou Da-Wei
E-mail: zhoudawei@nynu.edu.cn
|
Cite this article:
Pu Chun-Ying (濮春英), Ye Xiao-Tao (叶小涛), Jiang Hua-Long (蒋华龙), Zhang Fei-Wu (张飞武), Lu Zhi-Wen (卢志文), He Jun-Bao (何俊宝), Zhou Da-Wei (周大伟) Two-dimensional arsenic monolayer sheet predicted from first-principles 2015 Chin. Phys. B 24 036301
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[3] |
Wu H Q, Linghu C Y, Lü H M and Qian H 2013 Chin. Phys. B 22 098106
|
[4] |
Wang X R, Shi Y and Zhang R 2013 Chin. Phys. B 22 098505
|
[5] |
Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X and Gao H J 2014 Chin. Phys. B 23 098101
|
[6] |
Jin C, Lin F, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 195505
|
[7] |
Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
|
[8] |
Dai J, Zhao Y, Wu X J, Yang J L and Zeng X C 2013 J. Phys. Chem. Lett. 4 561
|
[9] |
Mak K F, Lee C G and Hone J 2010 Phys. Rev. Lett. 105 136805
|
[10] |
Coleman J N, Lotya M, O'Neill A, et al. 2011 Science 331 568
|
[11] |
Feng J, Sun X, Wu C, Peng L, Lin C, Hu S, Yang J and Xie Y 2011 J. Am. Chem. Soc. 133 17832
|
[12] |
Feng J, Peng L, Wu C, Sun X, Hu S, Lin C, Dai J, Yang J and Xie Y 2012 Adv. Mater. 24 1969
|
[13] |
Sun Y F, Cheng H, Gao S, Sun Z H, Liu Q H, Liu Q, Lei F C, Yao T, He J F, Wei S Q and Xie Y 2012 Angew. Chem., Int. Ed. 51 8727
|
[14] |
Xu M S, Yang T, Shi M M, Wu G and Chen H Z 2013 Chem. Rev. 113 3766
|
[15] |
Peng Q and De S 2013 RSC Adv. 3 24337
|
[16] |
Osada M and Sasaki T 2012 Adv. Mater. 24 210
|
[17] |
Zhuang H L, Singh A K and Hennig R G 2013 Phys. Rev. B 87 165415
|
[18] |
Freeman C L, Claeyssens F and Allan N L 2006 Phys. Rev. Lett. 96 066102
|
[19] |
Cahangirov S, Topsakal E, Aktürk M, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[20] |
Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 076801
|
[21] |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
|
[22] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[23] |
Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z J, Meng S, Yao Y G and Wu K H 2012 Phys. Rev. Lett. 109 056804
|
[24] |
Gao J F and Zhao J J 2012 Sci. Rep. 2 861
|
[25] |
Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y J and Wang H T 2014 Phys. Rev. Lett. 112 085502
|
[26] |
Wu X J, Dai J, Zhao Y, Zhuo Z W, Yang J L and Zeng X C 2012 ACS Nano 6 7443
|
[27] |
Yu X, Li L, Xu X W and Tang C C 2012 J. Phys. Chem. C 116 20075
|
[28] |
Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X and Gao H J 2014 Adv. Mater. 26 4820
|
[29] |
Liu H S, Gao J F and Zhao J J 2013 Sci. Rep. 3 3238
|
[30] |
Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S and Boldyrev A I 2014 Acc. Chem. Res. 47 1349
|
[31] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[32] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[33] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[34] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[35] |
Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
|
[36] |
Voon L C L Y, Sandberg E, Aga R S and Farajian A A 2010 Appl. Phys. Lett. 97 163114
|
[37] |
Houssa M, Pourtois G, Afanasév V V, et al. 2011 Appl. Phys. Lett. 98 223107
|
[38] |
Ding Y and Wang Y L 2012 Appl. Phys. Lett. 100 083102
|
[39] |
Zhao J J, Zhou X L, Chen X S, Wang J L and Jellinek J 2006 Phys. Rev. B 73 115418
|
[40] |
Zhuang H L and Hennig R G 2013 J. Phys. Chem. C 117 20440
|
[41] |
Gul R 2014 Europhys. Lett. 105 37012
|
[42] |
Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|