Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 037505    DOI: 10.1088/1674-1056/24/3/037505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tailoring the structural and magnetic properties of Cu-doped ZnO by c-axis pressure

Gong Ji-Jun (巩纪军)a b, Chen Ji-Pei (陈继培)a, Zhang Fei (张飞)a, Wu Hao (吴昊)a, Qin Ming-Hui (秦明辉)a, Zeng Min (曾敏)a, Gao Xing-Sen (高兴森)a, Liu Jun-Ming (刘俊明)c
a Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China;
b Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China;
c Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The structural and magnetic properties of the Cu-doped ZnO (ZnO:Cu) under c-axis pressure were studied using first-principle calculations. It was found that the ZnO:Cu undergoes a structural transition from Wurtzite to Graphite-like structure at a c-axis pressure of 7-8 GPa. This is accompanied by an apparent loss of ferromagnetic stability, indicating a magnetic transformation from a ferromagnetic state to a paramagnetic-like state. Further studies revealed that the magnetic instability is closely related to the variation in crystalline field originated from the structural transition, which is in association with the overlapping of spin-charge density between the Cu2+ and adjacent O2-.
Keywords:  diluted magnetic semiconductor      copper doped ZnO      ferromagnetism      first-principles calculation  
Received:  04 October 2014      Revised:  24 October 2014      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.55.Gs (II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51031004 and 51272078), the Natural Science Foundation of Guangdong, China (Grant No. S2012010008124), the National Basic Research Program of China (Grant No. 2015CB921202), the Project for Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2014), International Science & Technology Cooperation Platform Program of Guangzhou, China (Grant No. 2014J4500016), and the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1243).
Corresponding Authors:  Gao Xing-Sen, Liu Jun-Ming     E-mail:  xingsengao@scnu.edu.cn;liujm@nju.edu.cn

Cite this article: 

Gong Ji-Jun (巩纪军), Chen Ji-Pei (陈继培), Zhang Fei (张飞), Wu Hao (吴昊), Qin Ming-Hui (秦明辉), Zeng Min (曾敏), Gao Xing-Sen (高兴森), Liu Jun-Ming (刘俊明) Tailoring the structural and magnetic properties of Cu-doped ZnO by c-axis pressure 2015 Chin. Phys. B 24 037505

[1] Ohno H 1998 Science 281 951
[2] Sato K, Bergqvist L, Kudrnovský J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H and Zeller R 2010 Rev. Mod. Phys. 82 1633
[3] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[4] Sato K and Katayama-Yoshida H 2001 Jpn. J. Appl. Phys. 40 L334
[5] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 148
[6] Tian Y, Li Y, He M, Putra I A, Peng H, Yao B, Cheong S A and Wu T 2011 Appl. Phys. Lett. 98 162503
[7] Gu H, Zhang W, Xu Y and Yan M 2012 Appl. Phys. Lett. 100 202401
[8] Khan Z A, Rai A, Barman S R and Ghosh S 2013 Appl. Phys. Lett. 102 022105
[9] Zhan P, Wang W, Xie Z, Li Z, Zhang Z, Zhang P, Wang B and Cao X 2012 Appl. Phys. Lett. 101 031913
[10] Lu B, Zhang L Q, Lu Y H, Ye Z Z, Lu J G, Pan X H and Huang J Y 2012 Appl. Phys. Lett. 101 242401
[11] Xiong Z, Liu X C, Zhuo S Y, Yang J H, Shi E W, Yan W S, Yao S D and Pan H P 2013 Appl. Phys. Lett. 102 022414
[12] Zhan P, Xie Z, Li Z, Wang W, Zhang Z, Li Z, Cheng G, Zhang P, Wang B and Cao X 2013 Appl. Phys. Lett. 102 071914
[13] Chen S Y, Liu F J, Zhang J M, Lin Y B and Huang Z G 2014 Acta Phys. Sin. 63 077102 (in Chinese)
[14] Cheng Y, Hao W C, Li W X, Xu H Z, Chen R and Dou S X 2013 Chin. Phys. B 22 107501
[15] Huang L, Rosa A and Ahuja R 2006 Phys. Rev. B 74 075206
[16] Ye L H, Freeman A and Delley B 2006 Phys. Rev. B 73 033203
[17] Gopal P and Spaldin N A 2006 Phys. Rev. B 74 094418
[18] Chen S, Wu Q, Chen Z and Huang Z 2008 2nd IEEE International Nanoelectronics Conference 704
[19] Ferhat M, Zaoui A and Ahuja R 2009 Appl. Phys. Lett. 94 142502
[20] Shi L B, Xu C Y and Yuan H K 2010 Mod. Phys. Lett. B 24 2971
[21] Wang Q, Wang J and Zhong X 2012 Solid State Commun. 152 50
[22] Sato K and Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. 39 L555
[23] Park M and Min B 2003 Phys. Rev. B 68 224436
[24] Chien C H, Chiou S H, Guo G Y and Yao Y D 2004 J. Magn. Magn. Mater. 282 275
[25] Ran C J, Yang H L, Wang Y K, Hassan F M, Zhou L G, Xu X G and Jiang Y 2013 Chin. Phys. B 22 067503
[26] Khan Z A and Ghosh S 2011 Appl. Phys. Lett. 99 042504
[27] Buchholz D B, Chang R P H, Song J Y and Ketterson J B 2005 Appl. Phys. Lett. 87 082504
[28] Kataoka T, Yamazaki Y, Singh V, Fujimori A, Chang F H, Lin H J, Huang D, Chen C, Xing G, Seo J, Panagopoulos C and Wu T 2011 Phys. Rev. B 84 153203
[29] Thakur P, Bisogni V, Cezar J C, Brookes N B, Ghiringhelli G, Gautam S, Chae K H, Subramanian M, Jayavel R and Asokan K 2010 J. Appl. Phys. 107 103915
[30] Vachhani P S, Dallba G, Ramamoorthy R K, Rocca F, Sipr O and Bhatnagar A K 2012 J. Phys.: Condens. Matter. 24 506001
[31] Herng T S, Wong M F, Qi D, Yi J, Kumar A, Huang A, Kartawidjaja F C, Smadici S, Abbamonte P, Sanchez-Hanke C, Shannigrahi S, Xue J M, Wang J, Feng Y P, Rusydi A, Zeng K and Ding J 2011 Adv. Mater. 23 1635
[32] Hu J M and Nan C W 2009 Phys. Rev. B 80 224416
[33] Bibes M and Barthélémy A 2008 Nat. Mater. 7 425
[34] Segura M, Lindan P, Probert M, Pickard C, Hasnip P, Clark S and Payne M 2002 J. Phys.: Condens. Matter 14 2717
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Vanderbilt D 1990 Phys. Rev. B 41 7892
[37] Decremps F, Datchi F, Saitta A M, Polian A, Pascarelli S, Cicco A D, Itié J P and Baudelet F 2003 Phys. Rev. B 68 104101
[38] Karzel H, Potzel W, Köfferlein M, Schiessl W, Steiner M, Hiller U, Kalvius G M, Mitchell D W, Das T P, Blaha P, Schwarz K and Pasternak M P 1996 Phys. Rev. B 53 11425
[39] Schleife A, Fuchs F, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 245212
[40] Anisimov V I, Solovyev I V, Korotin M A, Czyżyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929
[41] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[42] Kulkarni A J, Zhou M and Sarasamak K 2006 Phys. Rev. Lett. 97 105052
[43] Yadav S K, Sadowski T and Ramprasad R 2010 Phys. Rev. B 81 144120
[44] Xu L Z, Liu Y L, Zhou H B, Liu L H, Zhang Y and Lu G H 2009 J. Phys.: Condens. Matter 21 495402
[45] Sato K, Schweika W, Dederichs P and Katayama-Yoshida H 2004 Phys. Rev. B 70 201202
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
No Suggested Reading articles found!