Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 034205    DOI: 10.1088/1674-1056/24/3/034205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

First-principles study on linear and nonlinear optical properties of ZnGeP2

Xiao Rui-Chun (肖瑞春)a b, Wu Hai-Xin (吴海信)a, Ni You-Bao (倪友保)a, Wang Zhen-You (王振友)a, Huang Chang-Bao (黄昌保)a b, Cheng Xu-Dong (程旭东)a b
a Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The study of the linear and nonlinear optical properties of ZnGeP2 based on density functional theory has been carried out. In order to get a more physical picture in the infrared region, terms which are considered as the phonon effect were added to the calculated refractive dispersion curves. The phonon-corrected calculation curves show excellent agreement with experimental refractive indexes, which gives a better comprehension of the linear optical proprieties in the transparent region. The static nonlinear optical susceptibility was investigated using approaches based on the “sum over states” and the 2n+1 theorem methods. Both of the results of these two methods reasonably coincided with the experimental results.

Keywords:  ZnGeP2      phonon effect      2n+1 theorem      “sum over state&rdquo      method  
Received:  23 July 2014      Revised:  30 October 2014      Accepted manuscript online: 
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  42.65.-k (Nonlinear optics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51202250) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. 13J131211).

Corresponding Authors:  Wu Hai-Xin     E-mail:  hxwu@ircrystal.com

Cite this article: 

Xiao Rui-Chun (肖瑞春), Wu Hai-Xin (吴海信), Ni You-Bao (倪友保), Wang Zhen-You (王振友), Huang Chang-Bao (黄昌保), Cheng Xu-Dong (程旭东) First-principles study on linear and nonlinear optical properties of ZnGeP2 2015 Chin. Phys. B 24 034205

[1] Ohmer M C and Pandey R 1998 MRS Bull. 23 16
[2] Yao B Q, Li G, Zhu G L, Meng P B, Ju Y L and Wang Y Z 2012 Chin. Phys. B 21 34213
[3] Schunemann P G and Pollak T M 1998 MRS Bull. 23 23
[4] Isomura S and Masumoto K 1971 Physica Status Solidi (a) 6 K139
[5] Bai L, Lin Z S, Wang Z, Chen C and Lee M H 2004 J. Chem. Phys. 120 8772
[6] Bai L, Lin Z S, Wang Z Z and Chen C T 2008 J. Appl. Phys. 103 083111
[7] Lin J, Lee M H, Liu Z P, Chen C T and Pickard C J 1999 Phys. Rev. B 60 13380
[8] Lin Z S, Lin J, Wang Z Z, Chen C T and Lee M H 2000 Phys. Rev. B 62 1757
[9] Lin Z S, Wang Z Z, Chen C and Lee M H 2001 J. Appl. Phys. 90 5585
[10] Lin Z S, W Z Z, Chen C T and Lee M H 2001 Acta Phys. Sin. 50 1145 (in Chinese)
[11] Lambrecht W R and Jiang X 2004 Phys. Rev. B 70 045204
[12] Rashkeev S N, Lambrecht W R L and Segall B 1998 Phys. Rev. B 57 3905
[13] Sharma S and Ambrosch-Draxl C 2004 Phys. Scr. T109 128
[14] DalCorso A, Mauri F and Rubio A 1996 Phys. Rev. B 53 15638
[15] Veithen M, Gonze X and Ghosez P 2005 Phys. Rev. B 71 125107
[16] Rashkeev S N, Limpijumnong S and Lambrecht W R 1999 Phys. Rev. B 59 2737
[17] Shaposhnikov V L, Krivosheeva A V, Borisenko V E, Lazzari J L and d'Avitaya F A 2012 Phys. Rev. B 85 205201
[18] Limpijumnong S, Lambrecht W R and Segall B 1999 Phys. Rev. B 60 8087
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Gonze X, Rignanese G M, Verstraete M, et al. 2005 Z. Kristallogr. 220 558
[21] Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582
[22] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[23] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[24] Verozubova G, Gribenyukov A and Mironov Y P 2007 Inorg. Mater. 43 1040
[25] Nikogosyan D 2006 Nonlinear Optical Crystals: A Complete Survey pp. 96-106
[26] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[27] Klingshirn C 2007 Semiconductor Optics (3th edn.) (Berlin: Springer) pp. 73-90
[28] Bass M, DeCusatis C, Enoch J, Lakshminarayanan V, Li G, Macdonald C, Mahajan V and Van Stryland E 2009 Handbook of Optics, (Vol. II) (2nd edn.) (New York: McGraw-Hill, Inc.) pp. 33.01-33.101
[29] Klocek P 1991 Handbook of Infrared Optical Materials (Texas: CRC Press) pp. 54-57
[30] Ghosh G 1997 Appl. Opt. 36 1540
[31] Tatian B 1984 Appl. Opt. 23 4477
[32] Bhar G C and Ghosh G 1979 J. Opt. Soc. Am. 69 730
[33] Levine B 1973 Phys. Rev. B 7 2600
[34] Kumar V, Tripathy S K, Jha V and Singh B P 2014 Phys. Lett. A 378 519
[35] Hughes J L P and Sipe J E 1996 Phys. Rev. B 53 10751
[36] Rashkeev S N and Lambrecht W R L 2001 Phys. Rev. B 63 165212
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[3] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[4] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[5] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[6] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[7] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[8] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[9] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[10] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[11] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[12] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[13] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[14] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[15] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
No Suggested Reading articles found!