Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 028505    DOI: 10.1088/1674-1056/24/2/028505
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors

Wu Shuang-Hong (吴双红)a, Li Wen-Lian (李文连)b, Chen Zhi (陈志)a c, Li Shi-Bin (李世彬)a, Wang Xiao-Hui (王晓晖)a, Wei Xiong-Bang (魏雄邦)a
a School of Optoelectronic Information and State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China;
b State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
c Department of Electrical & Computer Engineering, University of Kentucky, Lexington, KY 40506, USA
Abstract  We choose 8-hydroxyquinoline derivative-metal complexes (Beq, Mgq, and Znq) as the acceptors (A) and 4,4',4”-tri-(2-methylphenyl phenylamino) triphenylaine (m-MTDATA) as the donor (D) respectively to study the existing energy transfer process in the organic ultraviolet (UV) photodetector (PD), which has an important influence on the sensitivity of PDs. The energy transfer process from D to A without exciplex formation is discussed, differing from the working mechanism of previous PDs with Gaq [Zisheng Su, Wenlian Li, Bei Chu, Tianle Li, Jianzhuo Zhu, Guang Zhang, Fei Yan, Xiao Li, Yiren Chen and Chun-Sing Lee 2008 Appl. Phys. Lett. 93 103309)] and REq [J. B. Wang, W. L. Li, B. Chu, L. L. Chen, G. Zhang, Z. S. Su, Y. R. Chen, D. F. Yang, J. Z. Zhu, S. H. Wu, F. Yan, H. H. Liu, C. S. Lee 2010 Org. Electron. 11 1301] used as an A material. Under 365-nm UV irradiation with an intensity of 1.2 mW/cm2, the m-MTDATA:Beq blend device with a weight ratio of 1:1 shows a response of 192 mA/W with a detectivity of 6.5×1011 Jones, which exceeds those of PDs based on Mgq (146 mA/W) and Znq (182 mA/W) due to better energy level alignment between m-MTDATA/Beq and lower radiative decay. More photophysics processes of the PDs involved are discussed in detail.
Keywords:  organic photodetector      energy transfer      ultraviolet  
Received:  15 May 2014      Revised:  26 August 2014      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  95.55.Aq (Charge-coupled devices, image detectors, and IR detector arrays)  
  42.79.Pw (Imaging detectors and sensors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61371046, 61405026, 61474016, and 61421002) and China Postdoctoral Science Foundation (Grant No. 2014M552330).
Corresponding Authors:  Wu Shuang-Hong, Chen Zhi     E-mail:  shwu@uestc.edu.cn;zhichen@engr.uky.edu

Cite this article: 

Wu Shuang-Hong (吴双红), Li Wen-Lian (李文连), Chen Zhi (陈志), Li Shi-Bin (李世彬), Wang Xiao-Hui (王晓晖), Wei Xiong-Bang (魏雄邦) Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors 2015 Chin. Phys. B 24 028505

[1] Yu G, Zhang C and Heeger A J 1994 Appl. Phys. Lett. 64 1540
[2] Yu G, Cao Y, Wang J, McElvain J and Heeger A J 1999 Synth. Meter. 102 904
[3] Gong X, Tong M, Xia Y, Cai W, Moon J, Cao Y, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665
[4] Su Z S, Li W L, Chu B, Li T L, Zhu J Z, Zhang G, Yan F, Li X, Chen Y R and Lee C S 2008 Appl. Phys. Lett. 93 103309
[5] Zhang G, Li W L, Chu B, Su Z S, Yang D F, Yan F, Chen Y R, Zhang D Y, Han L L, Wang J B, Liu H H, Che G B, Zhang Z Q and Hu Z Z 2009 Org. Electron. 10 352
[6] Wu S H, Li W L, Chu B, Lee C S, Su Z S, Wang J B, Ren Q J, Hu Z Z and Zhang Z Q 2010 Appl. Phys. Lett. 97 023306
[7] Wu S H, Li W L, Chu B, Lee C S, Su Z S, Wang J B, Yan F, Zhang G, Hu Z Z and Zhang Z Q 2010 Appl. Phys. Lett. 96 093302
[8] Peumans P, Bulovic V and Forrest S R 2000 Appl. Phys. Lett. 76 3855
[9] Yu G, Yin S W, Liu Y Q, Shuai Z G and Zhu D B 2003 J. Am. Chem. Soc. 125 14816
[10] Sano T, Nishio Y, Hamada Y, Takahashi H, Usuki T and Shibata K 2000 J. Mater. Chem. 10 157
[11] Hamada Y, Sano T, Fujita M, Fujii T, Nishio Y and Shibata K 1994 Jpn. J. Appl. Phys. 32 L514
[12] Wu Q Y, Xie G H, Zhang Z S, Yue S Z, Wang P, Chen Y, Guo R D, Zhao Y and Liu S Y 2013 Acta Phys. Sin. 62 197204 (in Chinese)
[13] Tang C W, VanSlyke S A 1987 Appl. Phys. Lett. 51 913
[14] Chen C H and Shi J 1998 Coord. Chem. Rev. 171 161
[15] Liu B Q, Lan L F, Zou J H and Peng J B 2013 Acta Phys. Sin. 62 087302 (in Chinese)
[16] Zubair A, Mahdi H S, Issam I M, Wissam K A R, Khaulah S, Qayyum Z, Ahmad S H and Zurina S 2013 Chin. Phys. B 22 100701
[17] Wang N N, Yu J S, Zang Y and Jiang Y D 2010 Chin. Phys. B 19 038602
[18] Ray D and Narasimhan K L 2007 Appl. Phys. Lett. 91 093516
[19] Wang X L, Li H R, Zhang P and Li F L 2013 Chin. Phys. B 22 117102
[20] Shirota Y, Kuwabara Y, Inada H, Wakimota T, Nakada H, Yonemoto Y, Kawami S and Imai K 1994 Appl. Phys. Lett. 65 807
[21] Giebeler C, Antoniadis H, Bradley D D and Shirota Y 1998 Appl. Phys. Lett. 72 2448
[22] Wang H, Xu B S, Liu X G, Zhou H F, Hao Y Y, Xu H X and Chen L Q 2009 Org. Electron. 10 918
[23] Rice M J and Gartstein T N 1996 Phys. Rev. B 53 10764
[24] Halls J J M, Cornil J, Santos D A, Sibley R, Wang D H, Holmes A B, Brédas J L and Friend R H 1999 Phys. Rev. B 60 5721
[25] Sze S M and Ng K K 2007 Physics of Semiconductor Devices, 3rd edn. (New Jersey: Wiley-Interscience Publication) Chap. 13
[26] Monroy E, Calle F, Muñoz E, Omnès F, Gibart P and Muñoz J A 1998 Appl. Phys. Lett. 73 2146
[27] Collins C J, Chowdhury U, Wong M M, Yang B, Beck A L, Dupuis R D and Campbell J C 2002 Appl. Phys. Lett. 80 3754
[28] Kim E T, Madhukar A, Ye Z and Campbell J C 2004 Appl. Phys. Lett. 84 3277
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[3] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[4] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[5] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[6] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[7] Yield enhancement of elliptical high harmonics driven by bicircular laser pulses
Xiaofan Zhang(张晓凡) and Xiaosong Zhu(祝晓松). Chin. Phys. B, 2022, 31(11): 114209.
[8] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[9] Micro-pinch formation and extreme ultraviolet emission of laser-induced discharge plasma
Jun-Wu Wang(王均武), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗), and Vassily S. Zakharov. Chin. Phys. B, 2021, 30(9): 095207.
[10] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[11] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[12] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[13] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[14] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[15] Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio
Chang Liu(刘畅), Jing Liang(梁晶), Fangfang Wang(王芳芳), Chaojie Ma(马超杰), Kehai Liu(刘科海), Can Liu(刘灿), Hao Hong(洪浩), Huaibin Shen(申怀彬), Kaihui Liu(刘开辉), and Enge Wang(王恩哥). Chin. Phys. B, 2021, 30(12): 127802.
No Suggested Reading articles found!