Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 127802    DOI: 10.1088/1674-1056/ac6160
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability

Lizhi Fang(方立志)1, Xiong Zhou(周雄)1, Zhiwei Zhao(赵志伟)2, Biao Zheng(郑标)3, Haiping Xia(夏海平)1,†, Jun Wang(王军)3,‡, Hongwei Song(宋宏伟)4, and Baojiu Chen(陈宝玖)5
1 Key Laboratory of Photo-electronic Materials, Ningbo University, Ningbo 315211, China;
2 Taizhou Special Equipment Inspection and Research Institute, Taizhou 318000, China;
3 Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Sensing Materials and Smart Sensors, Minjiang University, Fuzhou 350108, China;
4 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering and College of Physics, Jilin University, Changchun 130012, China;
5 Department of Physics, Dalian Maritime University, Dalian 116026, China
Abstract  By using an improved Bridgman method, 0.3 mol% Tm$^{3+}/0.6$ mol% Tb$^{3+}/y$ mol% Eu$^{3+}$ ($y = 0$, 0.4, 0.6, 0.8) doped Na$_{5}$Y$_{9}$F$_{32}$ single crystals were prepared. The x-ray diffraction, excitation spectra, emission spectra and fluorescence decay curves were used to explore the crystal structure and optical performance of the obtained samples. When excited by 362 nm light, the cool white emission was realized by Na$_{5}$Y$_{9}$F$_{32}$ single crystal triply-doped with 0.3 mol% Tm$^{3+}/0.6$ mol% Tb$^{3+}/0.8$ mol% Eu$^{3+}$, in which the Commission Internationale de l'Eclairage (CIE) chromaticity coordinate was (0.2995, 0.3298) and the correlated color temperature (CCT) was 6586 K. The integrated normalized emission intensity of the tri-doped single crystal at 448 K could keep 62% of that at 298 K. The internal quantum yield (QY) was calculated to be $\sim 15.16$% by integrating spheres. These results suggested that the single crystals tri-doped with Tm$^{3+}$, Tb$^{3+}$ and Eu$^{3+}$ ions have a promising potential application for white light-emitting diodes (w-LEDs).
Keywords:  Tm3+/Tb3+/Eu3+ triply-doped Na5Y9F32      white light emission      energy transfer process      thermal stability  
Received:  09 January 2022      Revised:  15 March 2022      Accepted manuscript online:  28 March 2022
PACS:  78.60.Lc (Optically stimulated luminescence)  
  78.66.Sq (Composite materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62275133), the Natural Science Foundation of Zhejiang Province of China (Grant No. LY22E020002), the Natural Science Foundation of Ningbo (Grant Nos. 2021J077 and 202003N4099), and K.C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Haiping Xia, Jun Wang     E-mail:  hpxcm@nbu.edu.cn;wjnaf@163.com

Cite this article: 

Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖) Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability 2022 Chin. Phys. B 31 127802

[1] Xiao F, Yi R, Yuan H, Zang G and Xie C 2018 Spectrochim. Acta A 202 352
[2] Ray S, Tadge P, Dutta S, et al. 2018 Ceramics International 44 8334
[3] Jha K, Vishwakarma A K, Jayasimhadri M and Haranath D 2017 J. Alloys Compd. 719 116
[4] Chang J, Chen C, Rudysh M, Brik M G, Piasecki M and Liu W 2019 J. Lumin. 206 417
[5] Chen D, Zhou Y and Zhong J A 2016 RSC Advances 6 86285
[6] Wang X, Li X, Xu S, et al. 2020 J. Asian Ceram. Soc. 8 1066
[7] Kang F W, Hu Y H, Wu H Y, et al. 2011 Chin. Phys. Lett. 28 107201
[8] Dai P and Ma R 2020 J. Alloys Compd. 812 152143
[9] Mungra M, Steudel F, Ahrens B, et al. 2017 Journal of Luminescence 192 71
[10] Yu M, Xu X, Zhang W, Chen X, Zhang P and Huang Y 2020 J. Alloys Compd. 817 152761
[11] Shang M, Li C and Lin J 2014 Chem. Soc. Rev. 43 1372
[12] Liu Y, Liu G, Wang J, et al. 2014 Inorg. Chem. 53 11457
[13] Jin Y, Lu W, Zhang J, et al. 2014 J. Nanosci Nanotechno. 14 3683
[14] Naresh V, Gupta K, Reddy C P and Ham B S 2017 Spectrochim. Acta A 175 43
[15] Qiao Y, Zhou X, Zhang J, et al. 2020 J. Alloys Compd. 824 153987
[16] Qiao Y, Zhou X, Zhang J, Xia H, Song H and Chen B 2020 Infrared Phys. Techn. 105 103183
[17] Wang H, Xia H, Hu J, Zhu Y and Chen B 2018 J. Alloys Compd. 765 1035
[18] LeJemtel T H, Keung E, Sonnenblick E H, et al. 1979 Circulation 59 1098
[19] Chen D, Yu Y, Huang P, et al. 2010 Acta Mater. 58 3035
[20] Liu X, Chen G, Chen Y and Yang T 2017 J. Non-Cryst Solids 476 100
[21] Xu M, Ding Y, Luo W, et al. 2020 Optics & Laser Technology 121 105829
[22] Li B, Wang S, Sun Q, Lu C, Guo H and Huang X 2018 Dyes Pigments 154 252
[23] Cao J, Wang X, Li X, Wei Y, Chen L and Guo H 2016 J. Lumin. 170 207
[24] Jiao M, Guo N, Lü W, et al. 2013 Inorganic Chem. 52 10340
[25] Chen C, Gu Z, Li Q and Zhang Y 2020 J. Eur. Ceram. Soc. 40 4595
[26] Du P and Yu J S 2015 J. Alloys Compd. 653 468
[27] Luo D, Chen Q, Liu B, et al. 2019 Polymers 11 384
[28] Beck A R, Das S and Manam J 2017 J. Mater. Sci. 28 17168
[29] Xu F, Fang L, Zhou X, et al. 2020 Opt. Mater. 108 110222
[30] Yu B, Zheng B, Xia H, et al. 2021 Ceram. Int. 47 9668
[31] Jiao M, Xu Q, Liu M, et al. 2018 Chem. Phys. 20 26995
[32] Li Q, Zhang S, Lin W, Li W, Li Y, Mu Z and Wu F 2020 Spectrochim. Acta A 228 117755
[33] Zhang X, Zhou L, Pang Q, et al. 2014 J. Phys. Chem. C 118 7591
[34] Giraldo O G, Fei M, Wei R, Teng L, Zheng Z and Guo H 2020 J. Lumin. 219 116918
[35] Li J Y, Hou D, Zhang Y, Li H, Lin H, Lin Z, Zhou W and Huang R 2019 J. Lumin. 213 184
[36] Som S, Das S, Dutta S, et al. 2015 RSC Advances 5 70887
[37] Jiao Y, Wu X, Ren Q, et al. 2019 Optics & Laser Technology 109 470
[1] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[2] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[3] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[4] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[5] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[6] Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature
Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威). Chin. Phys. B, 2019, 28(5): 056402.
[7] Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华). Chin. Phys. B, 2018, 27(8): 087304.
[8] Synthesis of thermally stable HfOxNy as gate dielectric for AlGaN/GaN heterostructure field-effect transistors
Tong Zhang(张彤), Taofei Pu(蒲涛飞), Tian Xie(谢天), Liuan Li(李柳暗), Yuyu Bu(补钰煜), Xiao Wang(王霄), Jin-Ping Ao(敖金平). Chin. Phys. B, 2018, 27(7): 078503.
[9] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[10] Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers
Yun-Feng Lai(赖云锋), Fan Chen(陈凡), Ze-Cun Zeng(曾泽村), Pei-Jie Lin(林培杰), Shu-Ying Cheng(程树英), Jin-Ling Yu(俞金玲). Chin. Phys. B, 2017, 26(8): 087305.
[11] Enhanced thermal stability of VCSEL array by thermoelectric analysis-based optimization of mesas distribution
Chu-Yu Zhong(钟础宇), Xing Zhang(张星), Di Liu(刘迪), Yong-Qiang Ning(宁永强), Li-Jun Wang(王立军). Chin. Phys. B, 2017, 26(6): 064204.
[12] High thermal stability of diamond-cBN-B4C-Si composites
Hong-Sheng Jia(贾洪声), Pin-Wen Zhu(朱品文), Hao Ye(叶灏), Bin Zuo(左斌), Yuan-Long E(鄂元龙), Shi-Chong Xu(徐仕翀), Ji Li(李季), Hai-Bo Li(李海波), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(1): 018102.
[13] Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd—Fe—B magnets
Xiang-Bin Li(李向斌), Shuo Liu(刘硕), Xue-Jing Cao(曹学静), Bei-Bei Zhou(周贝贝), Ling Chen(陈岭), A-Ru Yan(闫阿儒), Gao-Lin Yan(严高林). Chin. Phys. B, 2016, 25(7): 077502.
[14] Improvement in coercivity,thermal stability,and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition
Beibei Zhou(周贝贝), Xiangbin Li(李向斌), Xuejing Cao(曹学静), Gaolin Yan(严高林), Aru Yan(闫阿儒). Chin. Phys. B, 2016, 25(11): 117504.
[15] Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films
Wen-Feng Liu(刘文峰), Min-Gang Zhang(张敏刚), Ke-Wei Zhang(张克维), Hai-Jie Zhang(张海杰), Xiao-Hong Xu(许小红), Yue-Sheng Chai(柴跃生). Chin. Phys. B, 2016, 25(11): 117506.
No Suggested Reading articles found!