Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 028701    DOI: 10.1088/1674-1056/24/2/028701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Stretching instability of intrinsically curved semiflexible biopolymers: A lattice model approach

Zhou Zi-Cong (周子聪), Lin Fang-Ting (林方庭), Chen Bo-Han (陈柏翰)
Department of Physics, Tamkang University, Yingzhuan Road, Danshui Dist., New Taipei City, Taiwan, China
Abstract  We apply a Monte Carlo simulation method to lattice systems to study the effect of an intrinsic curvature on the mechanical property of a semiflexible biopolymer. We find that when the intrinsic curvature is sufficiently large, the extension of a semiflexible biopolymer can undergo a first-order transition at finite temperature. The critical force increases with increasing intrinsic curvature. However, the relationship between the critical force and the bending rigidity is structure-dependent. In a triangle lattice system, when the intrinsic curvature is smaller than a critical value, the critical force increases with the increasing bending rigidity first, and then decreases with the increasing bending rigidity. In a square lattice system, however, the critical force always decreases with the increasing bending rigidity. In contrast, when the intrinsic curvature is greater than the critical value, the larger bending rigidity always results in a larger critical force in both lattice systems.
Keywords:  semiflexible biopolymer      intrinsic curvature      mechanical property      phase transition  
Received:  10 August 2014      Revised:  16 September 2014      Accepted manuscript online: 
PACS:  87.10.Pq (Elasticity theory)  
  36.20.Ey (Conformation (statistics and dynamics))  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.10.Rt (Monte Carlo simulations)  
Fund: Project supported by the Funds from MOST and “National” Center for Theoretical Physics (NCTS).
Corresponding Authors:  Zhou Zi-Cong     E-mail:  zzhou@mail.tku.edu.tw

Cite this article: 

Zhou Zi-Cong (周子聪), Lin Fang-Ting (林方庭), Chen Bo-Han (陈柏翰) Stretching instability of intrinsically curved semiflexible biopolymers: A lattice model approach 2015 Chin. Phys. B 24 028701

[1] Marko J F and Siggia E D 1994 Science 265 506
[2] Bustamante C, Marko J F, Siggia E D and Smith S 1994 Science 265 1599
[3] Marko J F and Siggia E D 1995 Macromolecules 28 8759
[4] Han W, Dlakic M, Zhu Y J, Lindsay S M and Harrington R E 1997 Proc. Natl. Acad. Sci. USA 94 10565
[5] Drew H R and Travers A A 1985 J. Mol. Biol. 186 773
[6] Dlakic M, Park K, Griffith J D, Harvey S C and Harrington R E 1996 J. Biol. Chem. 271 17911
[7] Han W, Lindsay S M, Dlakic M and Harrington R E 1997 Nature 386 563
[8] Moukhtar J, Fontaine E, Faivre-Moskalenko C and Arnéodo A 2007 Phys. Rev. Lett. 98 178101
[9] Smith B, Zastavker Y V and Benedek G B 2001 Phys. Rev. Lett. 87 278101
[10] Kessler D A and Rabin Y 2003 Phys. Rev. Lett. 90 024301
[11] Zhou Z, Lai P Y and Joós B 2005 Phys. Rev. E 71 052801
[12] Vaillant C, Audit B and Arnéodo A 2005 Phys. Rev. Lett. 95 068101
[13] Zhou Z 2007 Phys. Rev. E. 76 061913
[14] Hernandez L I, Ramnarain S P, Huff E J and Wang Y K 1993 Science 262 110
[15] Arnéodo A, Bacry E, Graves P V and Muzy J F 1995 Phys. Rev. Lett. 74 3293
[16] Marenduzzo D, Maritan A, Rosa A and Seno F 2003 Phys. Rev. Lett. 90 088301
[17] Prasad A, Hori Y and Kondev J 2005 Phys. Rev. E 72 041918
[18] Ji C, Zhang L Y, Hou X M, Dou S X and Wang P Y 2011 Chin. Phys. Lett. 28 068702
[19] Landau D P and Binder K 2005 A Guide to Monte Carlo Simulation in Statistical Physics, 2nd edn. pp. 78, 85
[20] Zhou Z C, Lin F T, Hung C Y, Wu H Y and Chen B H 2014 J Phys. Soc. Jpn. 83 044802
[21] Zhou Z and Lin F T 2014 Japanese Physical Society Conference Proceedings 1 012040
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[11] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
No Suggested Reading articles found!