Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 088201    DOI: 10.1088/1674-1056/ac6740
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics

S Sankararaman
Department of Optoelectronics, University of Kerala, Trivandrum, 695581, Kerala, India
Abstract  The paper employs the principles of graph theory in nanobiophotonics, where the soot-assisted intra-pigmental energy transport in leaves is unveiled through the laser-induced thermal lens (TL) technique. Nanofluids with different soot concentrations are sprayed over Lablab purpureus (L) sweet leaves, and the extracted pigments are analyzed. The graph features of the constructed complex network from the TL signal of the samples are analyzed to understand their variations with optical absorbance. Besides revealing the presence of optimum soot concentration that can enhance photosynthesis, the study brings out the potential application of graph features in nanobiophotonics.
Keywords:  nanobiophotonics      thermal lens      soot      pigmental energy transfer      graph theory  
Received:  26 November 2021      Revised:  23 March 2022      Accepted manuscript online:  14 April 2022
PACS:  82.80.Kq (Energy-conversion spectro-analytical methods (e.g., photoacoustic, photothermal, and optogalvanic spectroscopic methods))  
  74.20.Pq (Electronic structure calculations)  
  02.10.Ox (Combinatorics; graph theory)  
  81.05.U- (Carbon/carbon-based materials)  
Corresponding Authors:  S Sankararaman     E-mail:  drssraman@gmail.com

Cite this article: 

S Sankararaman How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics 2022 Chin. Phys. B 31 088201

[1] Rubinov M and Sporns O 2010 Neuroimage 52 1059
[2] Costa L da F, Rodrigues F A, Travieso G and Villas Boas P R 2007 Adv. Phys. 56 167
[3] da Mata A S 2020 Brazilian J. Phys. 50 658
[4] Sun C, Yang F, Wang C, Wang Z, Zhang Y, Ming D and Du J 2018 Front. Hum. Neurosci. 12 1
[5] Stam C J and Reijneveld J C 2007 Nonlinear Biomed. Phys. 1 3
[6] Yang H and Liu G 2013 Chaos-An Interdiscip. J. Nonlinear Sci. 23 043116
[7] Perez C and Germon R 2016 in Automating Open Source Intelligence, Chapter 7, eds. Robert L and Paul A W (Netherlands:Elsevier) pp. 103-129
[8] Mursa B E M, Andreica A and Dioşan L 2019 Procedia Comput. Sci. 159 333
[9] Zhang W Y, Wei Z W, Wang B H and Han X P 2016 Physica A 451 440
[10] Tam A C 1988 in Photothermal Investig. solids fluids, ed. Sell J (United Kingdom, Academic Press) pp. 1-34
[11] Bertolotti M and Li Voti R 2020 J. Appl. Phys. 128 230901
[12] Sell J 2012 Photothermal investigations of solids and fluids (Netherlands:Elsevier)
[13] Bialkowski S E, Astrath N G C and Proskurnin M A 2019 Photothermal Spectroscopy Methods Second (New Jersey:Wiley)
[14] Franko M and Tran C D 2006 Encyclopedia of Analytical Chemistry:Applications, Theory and Instrumentation (Wiley Online Library)
[15] Hu C and Whinnery J R 1973 Appl. Opt. 12 72
[16] Riya S, Swapna M S, Raj V and Sankararaman S 2021 Chin. Phys. B 30 067801
[17] Swapna M S, Raj V, Saritha Devi H V, Radhamany P M and Sankararaman S 2019 Eur. Phys. J. Plus 134 416
[18] Vasudevan S, Chen G C K and Andika M 2010 Appl. Phys. Lett. 96 113703
[19] Kaiplavil S 2013 J. Biomed. Opt. 18 097008
[20] Swapna M S and Sankararaman S 2020 Eur. Phys. J. Plus 135 224
[21] Raj V, Swapna M S, Satheesh Kumar K and Sankararaman S 2020 Chaos-An Interdiscip. J. Nonlinear Sci. 30 043113
[22] Swapna M S, Raj V, Sreejyothi S, Satheesh Kumar K and Sankararaman S 2020 Chaos-An Interdiscip. J. Nonlinear Sci. 30 073116
[23] Prasad P N 2006 Photon-based Nanoscience and Nanobiotechnology, NATO Science Series (Dordrecht:Springer) pp. 55-65
[24] Chacko J V 2020 Nano-Optics (Netherlands:Elsevier) pp. 113-162
[25] Swapna M S, Saritha Devi H V and Sankararaman S 2018 Appl. Phys. A 124 50
[26] Swapna M S and Sankararaman S 2018 J. Fluoresc. 28 543
[27] Tripathi K M, Sonker A K, Sonkar S K and Sarkar S 2014 RSC Adv. 4 30100
[28] Yoshida S, Forno D A and Cock J H 1971 Lab. Man. Physiol. Stud. rice. (Los Banos:Philippines)
[29] Swapna M S, Manjusha S, Raj V, Hari M and Sankararaman S 2018 JOSA B 35 1662
[30] Shao C, Cui P, Xun P, Peng Y and Jiang X 2018 Open Phys. 16 1009
[31] Stam C J 2005 Clin. Neurophysiol. 116 2266
[32] Freeman L C 1978 Soc. Networks 1 215
[33] Müh F and Zouni A 2020 Protein Sci. 29 1090
[34] Hoch G and Kok B 1961 Annu. Rev. Plant Physiol. 12 155
[35] Govindjee B Z B 1974 Light absorption emission photosynthesis (Oxford:Blackwell Scientific Publication Ltd)
[36] Swapna M S, Beryl C, Reshma S S, Chandran V, Vishnu V S, Radhamany P M and Sankararaman S 2017 Bionanoscience 7 583
[37] Swapna M S, Vimal R, Satheesh Kumar K and Sankararaman S 2020 J. Mol. Liq. 318 114038
[38] Newman M E J 2003 SIAM Rev. 45 167
[1] Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling
Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超). Chin. Phys. B, 2021, 30(8): 080501.
[2] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[3] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[4] Improvement of 2.79-μm laser performance on laser diode side-pumped GYSGG/Er,Pr: GYSGG bonding rod with concave end-faces
Xu-Yao Zhao(赵绪尧), Dun-Lu Sun(孙敦陆), Jian-Qiao Luo(罗建乔), Hui-Li Zhang(张会丽), Zhong-Qing Fang(方忠庆), Cong Quan(权聪), Lun-Zhen Hu(胡伦珍), Zhi-Yuan Han(韩志远), Mao-Jie Cheng(程毛杰), Shao-Tang Yin(殷绍唐). Chin. Phys. B, 2019, 28(11): 114208.
[5] Experimental determination of distributions of soot particle diameter and number density by emission and scattering techniques
Huawei Liu(柳华蔚), Shu Zheng(郑树). Chin. Phys. B, 2019, 28(1): 014206.
[6] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[7] Analytical model for thermal lensing and spherical aberration in diode side-pumped Nd:YAG laser rod having Gaussian pump profile
M H Moghtader Dindarlu, M Kavosh Tehrani, H Saghafifar, A Maleki. Chin. Phys. B, 2015, 24(12): 124205.
[8] Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
Wang Zhi-Gang (王志刚), Gao Rui-Mei (高瑞梅), Fan Xiao-Ming (樊晓明), Han Qi-Xing (韩七星). Chin. Phys. B, 2014, 23(9): 090201.
[9] Scattering and propagation of terahertz pulses in random soot aggregate systems
Li Hai-Ying (李海英), Wu Zhen-Sen (吴振森), Bai Lu (白璐), Li Zheng-Jun (李正军). Chin. Phys. B, 2014, 23(5): 054201.
[10] Exponential networked synchronization of master-slave chaotic systems with time-varying communication topologies
Yang Dong-Sheng(杨东升), Liu Zhen-Wei(刘振伟), Zhao Yan(赵琰), and Liu Zhao-Bing(刘兆冰) . Chin. Phys. B, 2012, 21(4): 040503.
[11] Dependence of curvature type of thermal lensing on number of bounces in a zigzag slab laser: numerical modeling
Fu Xing(付星), Liu Qiang(柳强), Yan Xing-Peng(闫兴鹏), and Gong Ma-Li(巩马理) . Chin. Phys. B, 2011, 20(11): 114210.
[12] Leader-following formation control of multi-agent networks based on distributed observers
Luo Xiao-Yuan(罗小元),Han Na-Ni(韩娜妮), and Guan Xin-Ping(关新平). Chin. Phys. B, 2010, 19(10): 100202.
[13] Concentration dependent nonlinear refraction in chloroaluminum phthalocyanine/ethanol solution
Yang Jun-Yi(杨俊义), Song Ying-Lin(宋瑛林), and Gu Ji-Hua(顾济华). Chin. Phys. B, 2009, 18(7): 2828-2834.
[14] Resonator insensitive investigation to thermal lens for end-pumped lasers
Gong Chuan-Bo (龚传波), Chen Chang-Shui (陈长水), Song Qiu-Ming (宋秋鸣), Zhu Ling (朱灵). Chin. Phys. B, 2004, 13(8): 1263-1268.
[15] Optical ballast and adaptive dynamic stable resonator
Zhang Guang-Yin (张光寅), Jiao Zhi-Yong (焦志勇), Guo Shu-Guang (郭曙光), Zhang Xiao-Hua (张晓华), Gu Xue-Wen (顾学文), Yan Cai-Fan (颜彩繁), Wu Ding-Er (武丁二), Song Feng (宋峰). Chin. Phys. B, 2004, 13(8): 1283-1286.
No Suggested Reading articles found!