Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 028103    DOI: 10.1088/1674-1056/24/2/028103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of annealing temperature on shape transformation and optical properties of germanium quantum dots

Alireza Samavatia, Z. Othamana, S. K. Ghoshalb, M. K. Mustafac
a Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia;
b Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia;
c Faculty of Science Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
Abstract  The influences of thermal annealing on the structural and optical features of radio frequency (rf) magnetron sputtered self-assembled Ge quantum dots (QDs) on Si (100) are investigated. Preferentially oriented structures of Ge along the (220) and (111) directions together with peak shift and reduced strain (4.9% to 2.7%) due to post-annealing at 650 ℃ are discerned from x-ray differaction (XRD) measurement. Atomic force microscopy (AFM) images for both pre-annealed and post-annealed (650 ℃) samples reveal pyramidal-shaped QDs (density ~ 0.26×1011 cm-2) and dome-shape morphologies with relatively high density ~ 0.92 ×1011 cm-2, respectively. This shape transformation is attributed to the mechanism of inter-diffusion of Si in Ge interfacial intermixing and strain non-uniformity. The annealing temperature assisted QDs structural evolution is explained using the theory of nucleation and growth kinetics where free energy minimization plays a pivotal role. The observed red-shift ~ 0.05 eV in addition to the narrowing of the photoluminescence peaks results from thermal annealing, and is related to the effect of quantum confinement. Furthermore, the appearance of a blue-violet emission peak is ascribed to the recombination of the localized electrons in the Ge-QDs/SiO2 or GeOx and holes in the ground state of Ge dots. Raman spectra of both samples exhibit an intense Ge-Ge optical phonon mode which shifts towards higher frequency compared with those of the bulk counterpart. An experimental Raman profile is fitted to the models of phonon confinement and size distribution combined with phonon confinement to estimate the mean dot sizes. A correlation between thermal annealing and modifications of the structural and optical behavior of Ge QDs is established. Tunable growth of Ge QDs with superior properties suitable for optoelectronic applications is demonstrated.
Keywords:  Ge QDs      sputtering      surface morphology      optical properties  
Received:  22 June 2014      Revised:  07 August 2014      Accepted manuscript online: 
PACS:  81.10.Pq (Growth in vacuum)  
  78.67.Hc (Quantum dots)  
  81.16.Dn (Self-assembly)  
Fund: Project supported by Ibnu Sina Institute for Fundamental Science Study, Universiti Teknologi Malaysia through Vote Q.J130000.2526.02H94, O5 and Postdoctoral Research Grant.
Corresponding Authors:  Alireza Samavati     E-mail:  alireza.samavati@yahoo.com

Cite this article: 

Alireza Samavati, Z. Othaman, S. K. Ghoshal, M. K. Mustafa Effects of annealing temperature on shape transformation and optical properties of germanium quantum dots 2015 Chin. Phys. B 24 028103

[1] Yang J, Jin Y, Wang C, Li L, Tao D and Yang Y 2012 Appl. Surf. Sci. 258 3637
[2] Kolobov A V 2000 J. Appl. Phys. 87 2926
[3] Das K, Goswami M L N, Dhar A, Mathur B K and Ray S K 2007 Nanotechnology 18 175301
[4] Yoffe D 2001 Adv. Phys. 50 1
[5] Ledentsov N N, Ustinov V M, Shchukin V A, Kopev P S, Alferov Z A and Bimberg D 1998 Semiconductors 32 343
[6] Alguno A, Usami N, Ujihara T, Fujiwara K, Sazaki G, Nakajima K and Shiraki Y 2003 Appl. Phys. Lett. 83 1258
[7] Zhang Y and Drucker J 2003 J. Appl. Phys. 93 15
[8] Saito H, Nishi K and Sugou S 1999 Appl. Phys. Lett. 74 1224
[9] Mukhametzhanov I, Wei Z, Heitz R and Madhukar A 1999 Appl. Phys. Lett. 75 85
[10] Stangl J, Holy V and Bauer G 2004 Rev. Mod. Phys. 76 725
[11] Biasiol G and Heun S 2011 Phys. Rep. 500 117
[12] Li C, Xu J, Li W, Jiang X F, Sun S H, Xu L and Chen K J 2013 Chin. Phys. B 22 107201
[13] Samavati A R, Othaman Z, Dabagh S and Ghoshal S K 2014 J. Nanosci. Nanotechnol. 14 5266
[14] Samavati A R, Othaman Z, Ghoshal S K and Amjad R J 2013 Chin. Phys. B 22 098102
[15] Prokes S M, Glembocki O J and Godbey D J 1992 Appl. Phys. Lett. 60 1087
[16] Tersoff J and LeGoues F K 1994 Phys. Rev. Lett. 72 3570
[17] Chen Y and Washburn J 1996 Phys. Rev. Lett. 77 4046
[18] Jesson D E, Chen G, Chen K M and Pennycook S J 1998 Phys. Rev. Lett. 80 5156
[19] Daruka I and Barabasi A L 1997 Phys. Rev. Lett. 79 3708
[20] Ross F M, Tersoff J and Tromp R M 1998 Phys. Rev. Lett. 80 984
[21] Cullity B D 1956 Elements of x-ray Diffraction (Massachusetts: Addison-Wesley Publishing Company)
[22] Cohen M L and Chelikowsky J R 1989 Electronic Structure and Optical Properties of Semiconductors, in Springer Series Solid-State Science, 2nd edn. (Berlin: Springer-Verlag)
[23] Min K S, Shcheglov K V, Yang C M, Atwater H A, Brongersma M L and Polman A 1996 Appl. Phys. Lett. 68 2511
[24] Takeoka S, Fujii M, Hayashi S and Yamamoto K 1998 Phys. Rev. B 58 7921
[25] Kartopu G, Karavanski V A, Serincan U, Turan R, Hummel R E, Ekinci Y, Gunnaes A and Fin-stad T G 2005 Phys. Stat. Sol. A 202 1472
[26] Huang Z H, Liang S D, Chen C Y and Lin D L 1998 J. Phys: Condens. Matter 10 1985
[27] Liu J L, Jin G, Tang Y S, Luo Y H, Wang K L and Yu D P 2000 Appl. Phys. Lett. 76 586
[28] Samavati A R, Othaman Z, Ghoshal S K and Dousti M R 2014 J. Lumin. 154 51
[29] Samavati A R, Othaman Z, Ghoshal S K and Zare S 2013 Chin. Opt. Lett. 11 112502
[30] P M Fauchett and Campbell I H 1988 Crit. Rev. Solid State Mater. 14 S14
[1] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[2] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[5] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[6] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[7] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[10] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[11] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[12] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[13] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[14] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[15] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
No Suggested Reading articles found!