CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thermodynamics around magnetic phase transitions in alternating double-chain spin systems |
Ding Lin-Jie (丁林杰), Zhong Yuan (钟园), Fan Shuai-Wei (樊帅伟), Zhu Li-Ya (朱丽娅) |
Department of Physics, China Three Gorges University, Yichang 443002, China |
|
|
Abstract The thermodynamics and quantum phase transitions of two typically alternating double-chain systems are investigated by Green's function theory. (i) For the completely antiferromagnetic (AFM) alternating double-chain, the low-temperature antiferromagnetism with gapped behavior is observed, which is in accordance with the experimental result. In a magnetic field, we unveil the ground state phase diagram with zero plateau, 1/2 plateau, and polarized ferromagnetic (FM) phases, as a result of the intra-cluster spin-singlet competition. Furthermore, the Grüneisen ratio is an excellent tool to identify the quantum criticality and testify various quantum phases. (ii) For the antiferromagnetically coupled FM alternating chains, the 1/2 magnetization plateau and double-peak structure of specific heat appear, which are also observed experimentally. Nevertheless, the M–h curve shows an anomalous behavior in an ultra-low field, which is ascribed to the effectively weak Haldane-like state, demonstrated by the two-site entanglement entropy explicitly.
|
Received: 21 May 2014
Revised: 26 July 2014
Accepted manuscript online:
|
PACS:
|
74.25.Bt
|
(Thermodynamic properties)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
75.10.Pq
|
(Spin chain models)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204157, 11174179, and 11247020), the Hubei Provincial Natural Science Foundation, China (Grant No. D20131307), and the China Three Gorges University Project (Grant No. KJ2011B068). |
Corresponding Authors:
Ding Lin-Jie
E-mail: dinglinjie82@126.com
|
Cite this article:
Ding Lin-Jie (丁林杰), Zhong Yuan (钟园), Fan Shuai-Wei (樊帅伟), Zhu Li-Ya (朱丽娅) Thermodynamics around magnetic phase transitions in alternating double-chain spin systems 2014 Chin. Phys. B 23 127401
|
|
| [1] | Sachdev S 2000 Science 288 475
|
|
| [2] | Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Phys. Rev. Lett. 94 227201
|
|
| [3] | Wolfa B, Tsuia Y, Jaiswal-Nagara D, Tutscha U, Honeckerb A, Remović-Langera K, Hofmanna G, Prokofievc A, Assmusa W, Donathd G and Langa M 2011 Proc. Natl. Acad. Sci. USA 108 6862
|
|
| [4] | Liu W J, Xin Z H, Chen S L and Zhang C Y 2013 Chin. Phys. B 22 027501
|
|
| [5] | Carr L D 2011 Understanding Quantum Phase Transitions (CRC Press, Taylor and Francis Group, LLC)
|
|
| [6] | Azzouz M 2008 Phys. Rev. B 78 014421
|
|
| [7] | Gong S S, Gao S and Su G 2009 Phys. Rev. B 80 014413
|
|
| [8] | Chen S R, Xia Y J and Man Z X 2010 Chin. Phys. B 19 050304
|
|
| [9] | Tan X D, Jin B Q and Gao W 2013 Chin. Phys. B 22 020308
|
|
| [10] | Garst M and Rosch A 2005 Phys. Rev. B 72 205129
|
|
| [11] | Meingast C, Hardy F, Heid R, Adelmann P, Böhmer A, Burger P, Ernst D, Fromknecht R, Schweiss P and Wolf T 2012 Phys. Rev. Lett. 108 177004
|
|
| [12] | Trippe C, Honecker A, Klümper A and Ohanyan V 2010 Phys. Rev. B 81 054402
|
|
| [13] | Qi Y, Du A and Ma Y 2012 Phys. Lett. A 377 27
|
|
| [14] | Jafari R 2012 Eur. Phys. J. B 85 167
|
|
| [15] | Topilko M, Krokhmalskii T, Derzhko O and Ohanyan V 2012 Eur. Phys. J. B 85 278
|
|
| [16] | Ohanyan V and Honecker A 2012 Phys. Rev. B 86 054412
|
|
| [17] | Boyarchemkov A S, Bostrem I G and Ovchinnikov A S 2007 Phys. Rev. B 76 224410
|
|
| [18] | Pereira M S S, de Moura F A B F and Lyra M L 2009 Phys. Rev. B 79 054427
|
|
| [19] | Totsuka K 1997 Phys. Rev. B 57 3454
|
|
| [20] | Oshikawa M, Yamanaka M and Affleck I 1997 Phys. Rev. Lett. 78 1984
|
|
| [21] | Rüegg Ch, Kiefer K, Thielemann B, McMorrow D F, Zapf V, Normand B, Zvonarev M B, Bouillot P, Kollath C, Giamarchi T, Capponi S, Poilblanc D, Biner D and Krämer K W 2008 Phys. Rev. Lett. 101 247202
|
|
| [22] | Ding L J, Yao K L and Fu H H 2010 ChemPhysChem 11 3291
|
|
| [23] | Hong T, Kim Y H, Hotta C, Takano Y, Tremelling G, Turnbull M M, Landee C P, Kang H J, Christensen N B, Lefmann K, Schmidt K P, Uhrig G S and Broholm C 2010 Phys. Rev. Lett. 105 137207
|
|
| [24] | Yamaguchi H, Iwase K, Ono T, Shimokawa T, Nakano H, Shimura Y, Kase N, Kittaka S, Sakakibara T, Kawakami T and Hosokoshi Y 2013 Phys. Rev. Lett. 110 157205
|
|
| [25] | Yamaguchi H, Miyagai H, Shimokawa T, Iwase K, Ono T, Kono Y, Kase N, Araki K, Kittaka S, Sakakibara T, Kawakami T, Okunishi K and Hosokoshi Y 2014 J. Phys. Soc. Jpn. arXiv: 1402.2743v1
|
|
| [26] | Iruoka A, Fukada M, Kumai R, Itakura M, Hikami S and Sugawara T 1994 J. Am. Chem. Soc. 116 2609
|
|
| [27] | Shiomi D, Kanaya T, Sato K, Mito M, Takeda K and Takui T 2001 J. Am. Chem. Soc. 123 11823
|
|
| [28] | Hayakawa K, Shiomi D, Ise T, Sato K and Takui T 2006 J. Mater. Chem. 16 4146
|
|
| [29] | Ise T, Shiomi D, Sato K and Takui T 2006 Chem. Commun. 46 4832
|
|
| [30] | Maekawa K, Shiomi D, Ise T, Sato K and Takui T 2007 Org. Biomol. Chem. 5 1641
|
|
| [31] | Gilroy J B, McKinnon S D J, Kennepohl P, Zsombor M S, Ferguson M J, Thompson L K and Hicks R G 2007 J. Org. Chem. 72 8062
|
|
| [32] | Zoppellaro G, Geies A, Andersson K K, Enkelmann V and Baumgarten M 2008 Eur. J. Org. Chem. 1431
|
|
| [33] | Tanaka H, Shiomi D, Suzuki S, Kozaki M, Okada K, Sato K and Takui T 2010 CrystEngComm 12 526
|
|
| [34] | Hui P, Arif M K and Chandrasekar R 2012 Org. Biomol. Chem. 10 2439
|
|
| [35] | Gao Y, Liu C G and Jiang Y S 2002 J. Phys. Chem. A 106 2592
|
|
| [36] | Zhu Y Y, Cui C, Li N, Wang B W, Wang Z M and Gao S 2013 Eur. J. Inorg. Chem. 3101
|
|
| [37] | Zhao Y, Li W, Xi B, Ran S J, Zhu Y Y, Wang B W, Gao S and Su G 2013 Europhys. Lett. 104 57009
|
|
| [38] | Iwase K, Yamaguchi H, Ono T, Shimokawa T, Nakano H, Matsuo A, Kindo K, Nojiri H and Hosokoshi Y 2013 J. Phys. Soc. Jpn. 82 074719
|
|
| [39] | Jordan P and Wigner E 1928 Z. Phys. 47 631
|
|
| [40] | Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 16 407
|
|
| [41] | Azzouz M 1993 Phys. Rev. B 48 6136
|
|
| [42] | Azzouz M 2007 Phys. Rev. B 76 064419
|
|
| [43] | Tyablikov S V 1967 Methods in the Quantum Theory of Magnetism (New York: Plenum)
|
|
| [44] | Callen H B 1963 Phys. Rev. 130 890
|
|
| [45] | de Lima J P and Goncalves L L 1999 J. Magn. Magn. Mater. 206 135
|
|
| [46] | Fröbrich P and Kuntz P J 2006 Phys. Rep. 432 223
|
|
| [47] | Wells B M, Landee C P, Turnbull M M, Awwadi F F and Twamley B 2005 J. Mol. Cat. A: Chem. 228 117
|
|
| [48] | Li Y C and Li S S 2008 Phys. Rev. B 78 184412
|
|
| [49] | Yamaguchi H, Okubo T, Iwase K, Ono T, Kono Y, Kittaka S, Sakakibara T, Matsuo A, Kindo K and Hosokoshi Y 2013 Phys. Rev. B 88 174410
|
|
| [50] | Haldane F D M 1983 Phys. Rev. Lett. 50 1153
|
|
| [51] | Date M and Kindo K 1990 Phys. Rev. Lett. 65 1659
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|